Section 10.2 Calculus with Parametric Curves

18. Find $d y / d x$ and $d^{2} y / d x^{2}$. For which values of t is the curve concave upward?

$$
x=t^{2}+1, \quad y=e^{t}-1
$$

Solution:

$x=t^{2}+1, y=e^{t}-1 \Rightarrow \frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{e^{t}}{2 t} \Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{d x / d t}=\frac{\frac{2 t e^{t}-e^{t} \cdot 2}{(2 t)^{2}}}{2 t}=\frac{2 e^{t}(t-1)}{(2 t)^{3}}=\frac{e^{t}(t-1)}{4 t^{3}}$.
The curve is CU when $\frac{d^{2} y}{d x^{2}}>0$, that is, when $t<0$ or $t>1$.
31. (a) Find the slope of the tangent line to the trochoid $x=r \theta-d \sin \theta, y=r-d \cos \theta$ in terms of θ. (See Exercise 10.1.49.)
(b) Show that if $d<r$, then the trochoid does not have a vertical tangent.

Solution:

$x=r \theta-d \sin \theta, y=r-d \cos \theta$.
(a) $\frac{d x}{d \theta}=r-d \cos \theta, \frac{d y}{d \theta}=d \sin \theta$, so $\frac{d y}{d x}=\frac{d \sin \theta}{r-d \cos \theta}$.
(b) If $0<d<r$, then $|d \cos \theta| \leq d<r$, so $r-d \cos \theta \geq r-d>0$. This shows that $d x / d \theta$ never vanishes, so the trochoid can have no vertical tangent if $d<r$.
38. Find the area enclosed by the given parametric curve and the y-axis.

$$
\begin{aligned}
& x=t^{2}-2 t, \\
& y=\sqrt{t}
\end{aligned}
$$

Solution:

The curve $x=t^{2}-2 t=t(t-2), y=\sqrt{t}$ intersects the y-axis when $x=0$, that is, when $t=0$ and $t=2$. The corresponding values of y are 0 and $\sqrt{2}$. The shaded area is given by

$$
\begin{aligned}
\int_{y=0}^{y=\sqrt{2}}\left(x_{R}-x_{L}\right) d y & =\int_{t=0}^{t=2}[0-x(t)] y^{\prime}(t) d t=-\int_{0}^{2}\left(t^{2}-2 t\right)\left(\frac{1}{2 \sqrt{t}} d t\right) \\
& =-\int_{0}^{2}\left(\frac{1}{2} t^{3 / 2}-t^{1 / 2}\right) d t=-\left[\frac{1}{5} t^{5 / 2}-\frac{2}{3} t^{3 / 2}\right]_{0}^{2} \\
& =-\left(\frac{1}{5} \cdot 2^{5 / 2}-\frac{2}{3} \cdot 2^{3 / 2}\right)=-2^{1 / 2}\left(\frac{4}{5}-\frac{4}{3}\right) \\
& =-\sqrt{2}\left(-\frac{8}{15}\right)=\frac{8}{15} \sqrt{2}
\end{aligned}
$$

40. Find the area of the region enclosed by the loop of the curve

$$
x=1-t^{2}, \quad y=t-t^{3}
$$

Solution:

By symmetry, the area of the shaded region is twice the area of the shaded portion above the x-axis. The top half of the loop is described by $x=1-t^{2}, y=t-t^{3}=t(1-t)(1+t), 0 \leq t \leq 1$ with x-intercepts 0 and 1 corresponding to $t=1$ and $t=0$, respectively. Thus, the area of the shaded region is
$2 \int_{0}^{1} y d x=2 \int_{1}^{0} y(t) x^{\prime}(t) d t=2 \int_{1}^{0}\left(t-t^{3}\right)(-2 t) d t=4 \int_{0}^{1}\left(t^{2}-t^{4}\right) d t=4\left[\frac{1}{3} t^{3}-\frac{1}{5} t^{5}\right]_{0}^{1}=4\left(\frac{1}{3}-\frac{1}{5}\right)=\frac{8}{15}$.
50. Find the exact length of the curve.

$$
x=3 \cos t-\cos 3 t, \quad y=3 \sin t-\sin 3 t, 0 \leq t \leq \pi
$$

Solution:

$x=3 \cos t-\cos 3 t, y=3 \sin t-\sin 3 t, 0 \leq t \leq \pi . \quad \frac{d x}{d t}=-3 \sin t+3 \sin 3 t$ and $\frac{d y}{d t}=3 \cos t-3 \cos 3 t$, so

$$
\begin{aligned}
\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2} & =9 \sin ^{2} t-18 \sin t \sin 3 t+9 \sin ^{2} 3 t+9 \cos ^{2} t-18 \cos t \cos 3 t+9 \cos ^{2} 3 t \\
& =9\left(\cos ^{2} t+\sin ^{2} t\right)-18(\cos t \cos 3 t+\sin t \sin 3 t)+9\left(\cos ^{2} 3 t+\sin ^{2} 3 t\right) \\
& =9(1)-18 \cos (t-3 t)+9(1)=18-18 \cos (-2 t)=18(1-\cos 2 t) \\
& =18\left[1-\left(1-2 \sin ^{2} t\right)\right]=36 \sin ^{2} t
\end{aligned}
$$

Thus, $L=\int_{0}^{\pi} \sqrt{36 \sin ^{2} t} d t=6 \int_{0}^{\pi}|\sin t| d t=6 \int_{0}^{\pi} \sin t d t=-6[\cos t]_{0}^{\pi}=-6(-1-1)=12$.

