Section 10.1 Curves Defined by Parametric Equations

15. $x=\cos \theta, y=\sec ^{2} \theta, 0 \leq \theta<\pi / 2$
(a) Eliminate the parameter to find a Cartesian equation of the curve.
(b) Sketch the curve and indicate with an arrow the direction in which the curve is traced as the parameter increases.

Solution:

(a) $x=\cos \theta, \quad y=\sec ^{2} \theta, \quad 0 \leq \theta<\pi / 2$.
$y=\sec ^{2} \theta=\frac{1}{\cos ^{2} \theta}=\frac{1}{x^{2}}$. For $0 \leq \theta<\pi / 2$, we have $1 \geq x>0$
and $1 \leq y$.
(b)

30. Match the graphs of the parametric equations $x=f(t), y=g(t)$ in (a)-(d) with one of the parametric curves $x=f(t), y=g(t)$ labeled I-IV. Give reasons for your choices.

Solution:

(a) From the first graph, we have $1 \leq x \leq 2$. From the second graph, we have $-1 \leq y \leq 1$. The only choice that satisfies either of those conditions is III.
(b) From the first graph, the values of x cycle through the values from -2 to 2 four times. From the second graph, the values of y cycle through the values from -2 to 2 six times. Choice I satisfies these conditions.
(c) From the first graph, the values of x cycle through the values from -2 to 2 three times. From the second graph, we have $0 \leq y \leq 2$. Choice IV satisfies these conditions.
(d) From the first graph, the values of x cycle through the values from -2 to 2 two times. From the second graph, the values of y do the same thing. Choice II satisfies these conditions.
49. Let P be a point at a distance d from the center of a circle of radius r. The curve traced out by P as the circle rolls along a straight line is called a trochoid. (Think of the motion of a point on a spoke of a bicycle wheel.) The cycloid is the special case of a trochoid with $d=r$. Using the same parameter θ as for the cycloid, and assuming the line is the x-axis and $\theta=0$ when P is at one of its lowest points, show that parametric equations of the trochoid are

$$
x=r \theta-d \sin \theta \quad y=r-d \cos \theta
$$

Sketch the trochoid for the cases $d<r$ and $d>r$.

Solution:

The first two diagrams depict the case $\pi<\theta<\frac{3 \pi}{2}, d<r$. As in Example 7, C has coordinates $(r \theta, r)$. Now Q (in the second diagram) has coordinates $(r \theta, r+d \cos (\theta-\pi))=(r \theta, r-d \cos \theta)$, so a typical point P of the trochoid has coordinates $(r \theta+d \sin (\theta-\pi), r-d \cos \theta)$. That is, P has coordinates (x, y), where $x=r \theta-d \sin \theta$ and $y=r-d \cos \theta$. When $d=r$, these equations agree with those of the cycloid.

53. A curve, called a witch of Maria Agnesi, consists of all possible positions of the point P in the figure. Show that parametric equations for this curve can be written as

$$
x=2 a \cot \theta \quad y=2 a \sin ^{2} \theta
$$

Sketch the curve.

Solution:

$C=(2 a \cot \theta, 2 a)$, so the x-coordinate of P is $x=2 a \cot \theta$. Let $B=(0,2 a)$.
Then $\angle O A B$ is a right angle and $\angle O B A=\theta$, so $|O A|=2 a \sin \theta$ and $A=((2 a \sin \theta) \cos \theta,(2 a \sin \theta) \sin \theta)$. Thus, the y-coordinate of P is $y=2 a \sin ^{2} \theta$.

