Section 10.1 Curves Defined by Parametric Equations

15. $x = \cos \theta, y = \sec^2 \theta, 0 \le \theta < \pi/2$

- (a) Eliminate the parameter to find a Cartesian equation of the curve.
- (b) Sketch the curve and indicate with an arrow the direction in which the curve is traced as the parameter increases.

Solution:

(a)
$$x = \cos \theta$$
, $y = \sec^2 \theta$, $0 \le \theta < \pi/2$.
 $y = \sec^2 \theta = \frac{1}{\cos^2 \theta} = \frac{1}{x^2}$. For $0 \le \theta < \pi/2$, we have $1 \ge x > 0$
and $1 \le y$.
(b)

30. Match the graphs of the parametric equations x = f(t), y = g(t) in (a)–(d) with one of the parametric curves x = f(t), y = g(t) labeled I–IV. Give reasons for your choices.

x

1

0

Solution:

- (a) From the first graph, we have $1 \le x \le 2$. From the second graph, we have $-1 \le y \le 1$. The only choice that satisfies either of those conditions is III.
- (b) From the first graph, the values of x cycle through the values from -2 to 2 four times. From the second graph, the values of y cycle through the values from -2 to 2 six times. Choice I satisfies these conditions.
- (c) From the first graph, the values of x cycle through the values from -2 to 2 three times. From the second graph, we have $0 \le y \le 2$. Choice IV satisfies these conditions.
- (d) From the first graph, the values of x cycle through the values from -2 to 2 two times. From the second graph, the values of y do the same thing. Choice II satisfies these conditions.
- 49. Let P be a point at a distance d from the center of a circle of radius r. The curve traced out by P as the circle rolls along a straight line is called a **trochoid**. (Think of the motion of a point on a spoke of a bicycle wheel.) The cycloid is the special case of a trochoid with d = r. Using the same parameter θ as for the cycloid, and assuming the line is the x-axis and $\theta = 0$ when P is at one of its lowest points, show that parametric equations of the trochoid are

$$x = r\theta - d\sin\theta$$
 $y = r - d\cos\theta$

Sketch the trochoid for the cases d < r and d > r.

Solution:

The first two diagrams depict the case $\pi < \theta < \frac{3\pi}{2}$, d < r. As in Example 7, C has coordinates $(r\theta, r)$. Now Q (in the second diagram) has coordinates $(r\theta, r + d\cos(\theta - \pi)) = (r\theta, r - d\cos\theta)$, so a typical point P of the trochoid has coordinates $(r\theta + d\sin(\theta - \pi), r - d\cos\theta)$. That is, P has coordinates (x, y), where $x = r\theta - d\sin\theta$ and $y = r - d\cos\theta$. When d = r, these equations agree with those of the cycloid.

53. A curve, called a witch of Maria Agnesi, consists of all possible positions of the point P in the figure. Show that parametric equations for this curve can be written as

$$x = 2a\cot\theta \quad y = 2a\sin^2\theta$$

Sketch the curve.

Solution:

 $C = (2a \cot \theta, 2a)$, so the *x*-coordinate of *P* is $x = 2a \cot \theta$. Let B = (0, 2a). Then $\angle OAB$ is a right angle and $\angle OBA = \theta$, so $|OA| = 2a \sin \theta$ and $A = ((2a \sin \theta) \cos \theta, (2a \sin \theta) \sin \theta)$. Thus, the *y*-coordinate of *P* is $y = 2a \sin^2 \theta$.

