Section 1.5 Inverse Functions and Logarithms

43. Use the laws of logarithms to expand each expression. (a) $\log _{10}\left(x^{2} y^{3} z\right) \quad$ (b) $\ln \left(\frac{x^{4}}{\sqrt{x^{2}-4}}\right)$

Solution:

(a) $\log _{10}\left(x^{2} y^{3} z\right)=\log _{10} x^{2}+\log _{10} y^{3}+\log _{10} z \quad$ [Law 1]

$$
=2 \log _{10} x+3 \log _{10} y+\log _{10} z \quad[\text { Law 3] }
$$

(b) $\ln \left(\frac{x^{4}}{\sqrt{x^{2}-4}}\right)=\ln x^{4}-\ln \left(x^{2}-4\right)^{1 / 2}$

$$
\begin{array}{lr}
=\ln x^{4}-\ln \left(x^{2}-4\right)^{1 / 2} & {[\text { Law 2] }} \\
=4 \ln x-\frac{1}{2} \ln [(x+2)(x-2)] & {[\text { Law 3] }} \\
=4 \ln x-\frac{1}{2}[\ln (x+2)+\ln (x-2)] & {[\text { Law 1] }} \\
=4 \ln x-\frac{1}{2} \ln (x+2)-\frac{1}{2} \ln (x-2) &
\end{array}
$$

56. $f(x)=\ln (x-1)-1$
(a) What are the domain and range of f ?
(b) What is the x-intercept of the graph of f ?
(c) Sketch the graph of f.

Solution:

(a) The domain of $f(x)=\ln (x-1)-1$ is $x>1$ and the range is \mathbb{R}.
(b) $y=0 \Rightarrow \ln (x-1)-1=0 \quad \Rightarrow \quad \ln (x-1)=1 \quad \Rightarrow$ $x-1=e^{1} \quad \Rightarrow \quad x=e+1$
(c) We shift the graph of $y=\ln x$ one unit to the right and one unit downward.

74. Find the exact value of each expression. (a) $\arcsin (\sin (5 \pi / 4))$ (b) $\cos \left(2 \sin ^{-1}\left(\frac{5}{13}\right)\right)$

Solution:

(a) $\arcsin (\sin (5 \pi / 4))=\arcsin (-1 / \sqrt{2})=-\frac{\pi}{4}$ because $\sin \left(-\frac{\pi}{4}\right)=-1 / \sqrt{2}$ and $-\frac{\pi}{4}$ is in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
(b) Let $\theta=\sin ^{-1}\left(\frac{5}{13}\right) \quad$ [see the figure].

$$
\begin{aligned}
\cos \left(2 \sin ^{-1}\left(\frac{5}{13}\right)\right) & =\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta \\
& =\left(\frac{12}{13}\right)^{2}-\left(\frac{5}{13}\right)^{2}=\frac{144}{169}-\frac{25}{169}=\frac{119}{169}
\end{aligned}
$$

77. Simplify the expression. $\sin \left(\tan ^{-1} x\right)$.

Solution:

Let $y=\tan ^{-1} x$. Then $\tan y=x$, so from the triangle (which illustrates the case $y>0$), we see that
$\sin \left(\tan ^{-1} x\right)=\sin y=\frac{x}{\sqrt{1+x^{2}}}$.

78. Simplify the expression. $\sin (2 \arccos x)$.

Solution:

Let $y=\arccos x$. Then $\cos y=x$, so from the triangle (which
illustrates the case $y>0$), we see that

$$
\begin{aligned}
\sin (2 \arccos x) & =\sin 2 y=2 \sin y \cos y \\
& =2\left(\sqrt{1-x^{2}}\right)(x)=2 x \sqrt{1-x^{2}}
\end{aligned}
$$

