Section 1.4 Exponential Functions

2. Use the Laws of Exponents to rewrite and simplify each expression.

(a)
$$\frac{\sqrt[3]{4}}{\sqrt[3]{108}}$$
 (b) $27^{2/3}$ (c) $2x^2(3x^5)^2$ (d) $(2x^{-2})^{-3}x^{-3}$ (e) $\frac{3a^{3/2} \cdot a^{1/2}}{a^{-1}}$ (f) $\frac{\sqrt{a\sqrt{b}}}{\sqrt[3]{ab}}$
Solution:
(a) $\frac{\sqrt[3]{4}}{\sqrt[3]{108}} = \frac{\sqrt[3]{4}}{\sqrt[3]{4 \cdot 27}} = \frac{\sqrt[3]{4}}{\sqrt[3]{4 \cdot \sqrt[3]{27}}} = \frac{1}{\sqrt[3]{27}} = \frac{1}{3}$
(b) $27^{2/3} = (27^{1/3})^2 = (\sqrt[3]{27})^2 = 3^2 = 9$
(c) $2x^2(3x^5)^2 = 2x^2 \cdot 3^2(x^5)^2 = 2x^2 \cdot 9x^{10} = 2 \cdot 9x^{2+10} = 18x^{12}$
(d) $(2x^{-2})^{-3}x^{-3} = 2^{-3}(x^{-2})^{-3}x^{-3} = \frac{x^6 \cdot x^{-3}}{2^3} = \frac{x^{6+(-3)}}{8} = \frac{x^3}{8}$
(e) $\frac{3a^{3/2} \cdot a^{1/2}}{a^{-1}} = 3a^{3/2+1/2} \cdot a^1 = 3a^2 \cdot a = 3a^3$
(f) $\frac{\sqrt{a\sqrt{b}}}{\sqrt[3]{ab}} = \frac{(ab^{1/2})^{1/2}}{(ab)^{1/3}} = \frac{a^{1/2}(b^{1/2})^{1/2}}{a^{1/3}b^{1/3}} = \frac{a^{1/2}b^{1/4}}{a^{1/3}b^{1/3}} = a^{1/2-1/3}b^{1/4-1/3} = a^{1/6}b^{-1/12} = \frac{a^{1/6}}{b^{1/12}} = \frac{\sqrt[6]{a}}{\frac{1\sqrt{6}}{\sqrt[6]{b}}}$

20. Find the exponential function $f(x) = Cb^x$ whose graph is given.

Solution:

Use $y = Cb^x$ with the points (-1, 3) and $(1, \frac{4}{3})$. From the point (-1, 3), we have $3 = Cb^{-1}$, hence C = 3b. Using this and the point $(1, \frac{4}{3})$, we get $\frac{4}{3} = Cb^1 \Rightarrow \frac{4}{3} = (3b)b \Rightarrow \frac{4}{9} = b^2 \Rightarrow b = \frac{2}{3}$ [since b > 0] and $C = 3(\frac{2}{3}) = 2$. The function is $f(x) = 2(\frac{2}{3})^x$.