Section 1.4 Exponential Functions

2. Use the Laws of Exponents to rewrite and simplify each expression.
(a) $\frac{\sqrt[3]{4}}{\sqrt[3]{108}}$
(b) $27^{2 / 3}$
(c) $2 x^{2}\left(3 x^{5}\right)^{2}$
(d) $\left(2 x^{-2}\right)^{-3} x^{-3}$
(e) $\frac{3 a^{3 / 2} \cdot a^{1 / 2}}{a^{-1}}$
(f) $\frac{\sqrt{a \sqrt{b}}}{\sqrt[3]{a b}}$

Solution:

(a) $\frac{\sqrt[3]{4}}{\sqrt[3]{108}}=\frac{\sqrt[3]{4}}{\sqrt[3]{4 \cdot 27}}=\frac{\sqrt[3]{4}}{\sqrt[3]{4} \cdot \sqrt[3]{27}}=\frac{1}{\sqrt[3]{27}}=\frac{1}{3}$
(b) $27^{2 / 3}=\left(27^{1 / 3}\right)^{2}=(\sqrt[3]{27})^{2}=3^{2}=9$
(c) $2 x^{2}\left(3 x^{5}\right)^{2}=2 x^{2} \cdot 3^{2}\left(x^{5}\right)^{2}=2 x^{2} \cdot 9 x^{10}=2 \cdot 9 x^{2+10}=18 x^{12}$
(d) $\left(2 x^{-2}\right)^{-3} x^{-3}=2^{-3}\left(x^{-2}\right)^{-3} x^{-3}=\frac{x^{6} \cdot x^{-3}}{2^{3}}=\frac{x^{6+(-3)}}{8}=\frac{x^{3}}{8}$
(e) $\frac{3 a^{3 / 2} \cdot a^{1 / 2}}{a^{-1}}=3 a^{3 / 2+1 / 2} \cdot a^{1}=3 a^{2} \cdot a=3 a^{3}$
(f) $\frac{\sqrt{a \sqrt{b}}}{\sqrt[3]{a b}}=\frac{\left(a b^{1 / 2}\right)^{1 / 2}}{(a b)^{1 / 3}}=\frac{a^{1 / 2}\left(b^{1 / 2}\right)^{1 / 2}}{a^{1 / 3} b^{1 / 3}}=\frac{a^{1 / 2} b^{1 / 4}}{a^{1 / 3} b^{1 / 3}}=a^{1 / 2-1 / 3} b^{1 / 4-1 / 3}=a^{1 / 6} b^{-1 / 12}=\frac{a^{1 / 6}}{b^{1 / 12}}=\frac{\sqrt[6]{a}}{\sqrt[12]{b}}$
20. Find the exponential function $f(x)=C b^{x}$ whose graph is given.

Solution:

Use $y=C b^{x}$ with the points $(-1,3)$ and $\left(1, \frac{4}{3}\right)$. From the point $(-1,3)$, we have $3=C b^{-1}$, hence $C=3 b$. Using this and the point $\left(1, \frac{4}{3}\right)$, we get $\frac{4}{3}=C b^{1} \Rightarrow \quad \frac{4}{3}=(3 b) b \quad \Rightarrow \quad \frac{4}{9}=b^{2} \Rightarrow b=\frac{2}{3} \quad[$ since $b>0] \quad$ and $C=3\left(\frac{2}{3}\right)=2$. The function is $f(x)=2\left(\frac{2}{3}\right)^{x}$.

