Section 1.3 New Functions from Old Functions

4. The graph of f is given. Draw the graphs of the following functions.
(a) $y=f(x)-3$
(b) $y=f(x+1)$
(c) $y=\frac{1}{2} f(x)$
(d) $y=-f(x)$

Solution:

(a) $y=f(x)-3$: Shift the graph of $f 3$ units down.

(c) $y=\frac{1}{2} f(x)$: Shrink the graph of f vertically by a factor of 2 .

(b) $y=f(x+1)$: Shift the graph of $f 1$ unit to the left.

(d) $y=-f(x)$: Reflect the graph of f about the x-axis.

36. Find the functions (a) $f \circ g$, (b) $g \circ f$, (c) $f \circ f$, and (d) $g \circ g$ and their domains.

$$
f(x)=\frac{1}{x}, g(x)=2 x+1
$$

Solution:

$f(x)=1 / x$ and $g(x)=2 x+1$. The domain of f is $(-\infty, 0) \cup(0, \infty)$. The domain of g is $(-\infty, \infty)$.
(a) $(f \circ g)(x)=f(g(x))=f(2 x+1)=\frac{1}{2 x+1}$. The domain is
$\{x \mid 2 x+1 \neq 0\}=\left\{x \left\lvert\, x \neq-\frac{1}{2}\right.\right\}=\left(-\infty,-\frac{1}{2}\right) \cup\left(-\frac{1}{2}, \infty\right)$.
(b) $(g \circ f)(x)=g(f(x))=g\left(\frac{1}{x}\right)=2\left(\frac{1}{x}\right)+1=\frac{2}{x}+1$. We must have $x \neq 0$, so the domain is $(-\infty, 0) \cup(0, \infty)$.
(c) $(f \circ f)(x)=f(f(x))=f\left(\frac{1}{x}\right)=\frac{1}{1 / x}=x$. Since f requires $x \neq 0$, the domain is $(-\infty, 0) \cup(0, \infty)$.
(d) $(g \circ g)(x)=g(g(x))=g(2 x+1)=2(2 x+1)+1=4 x+3$. The domain is $(-\infty, \infty)$.
54. Express the function in the form $H(t)=\cos (\sqrt{\tan t}+1)$

Solution:

Let $h(t)=\tan t, g(t)=\sqrt{t}+1$, and $f(t)=\cos t$. Then
$(f \circ g \circ h)(t)=f(g(h(t)))=f(g(\tan t))=f(\sqrt{\tan t}+1)=\cos (\sqrt{\tan t}+1)=H(t)$.

