Section 1.3 New Functions from Old Functions

4. The graph of f is given. Draw the graphs of the following functions.

(a)
$$y = f(x) - 3$$
 (b) $y = f(x+1)$ (c) $y = \frac{1}{2}f(x)$ (d) $y = -f(x)$

Solution:

(a) y = f(x) - 3: Shift the graph of f 3 units down.

y 🔺		
0	\wedge	x x
	++	

(c) $y = \frac{1}{2}f(x)$: Shrink the graph of f vertically by a

factor of 2.

	y,	•							
		_		_			_	_	
	1-		/	`	-	-	-		
	0	Ľ	1						X
			_				_		

(b) y = f(x + 1): Shift the graph of f 1 unit to the left.

		y,	1				_
		37					_
		1					_
		/					_
	\vee	/	_				
	-1	+	0	-	-	\square	x

(d) y = -f(x): Reflect the graph of f about the x-axis.

			y,						
			0					_	 × x
		7		\backslash					
+			2-		ł		/	~	
			_				_	_	_

36. Find the functions (a) $f \circ g$, (b) $g \circ f$, (c) $f \circ f$, and (d) $g \circ g$ and their domains.

$$f(x) = \frac{1}{x}, g(x) = 2x + 1$$

Solution:

$$\begin{split} f(x) &= 1/x \text{ and } g(x) = 2x + 1. \text{ The domain of } f \text{ is } (-\infty, 0) \cup (0, \infty). \text{ The domain of } g \text{ is } (-\infty, \infty). \\ \text{(a) } (f \circ g)(x) &= f(g(x)) = f(2x+1) = \frac{1}{2x+1}. \text{ The domain is} \\ &\{x \mid 2x+1 \neq 0\} = \{x \mid x \neq -\frac{1}{2}\} = (-\infty, -\frac{1}{2}) \cup (-\frac{1}{2}, \infty). \\ \text{(b) } (g \circ f)(x) &= g(f(x)) = g\left(\frac{1}{x}\right) = 2\left(\frac{1}{x}\right) + 1 = \frac{2}{x} + 1. \text{ We must have } x \neq 0, \text{ so the domain is } (-\infty, 0) \cup (0, \infty). \\ \text{(c) } (f \circ f)(x) &= f(f(x)) = f\left(\frac{1}{x}\right) = \frac{1}{1/x} = x. \text{ Since } f \text{ requires } x \neq 0, \text{ the domain is } (-\infty, 0) \cup (0, \infty). \\ \text{(d) } (g \circ g)(x) &= g(g(x)) = g(2x+1) = 2(2x+1) + 1 = 4x + 3. \text{ The domain is } (-\infty, \infty). \end{split}$$

54. Express the function in the form $H(t) = \cos(\sqrt{\tan t} + 1)$

Solution:

Let
$$h(t) = \tan t$$
, $g(t) = \sqrt{t} + 1$, and $f(t) = \cos t$. Then
 $(f \circ g \circ h)(t) = f(g(h(t))) = f(g(\tan t)) = f(\sqrt{\tan t} + 1) = \cos(\sqrt{\tan t} + 1) = H(t).$