Section 1.1 Four Ways to Represent a Function

4. The graphs of f and g are given.
(a) State the values of $f(-4)$ and $g(3)$.
(b) Which is larger, $f(-3)$ or $g(-3)$?
(c) For what values of x is $f(x)=g(x)$?
(d) On what interval(s) is $f(x) \leq g(x)$?
(e) State the solution of the equation $f(x)=-1$.
(f) On what interval(s) is g decreasing?
(g) State the domain and range of f.
(h) State the domain and range of g.

Solution:

(a) From the graph, we have $f(-4)=-2$ and $g(3)=4$.
(b) Since $f(-3)=-1$ and $g(-3)=2$, or by observing that the graph of g is above the graph of f at $x=-3, g(-3)$ is larger than $f(-3)$.
(c) The graphs of f and g intersect at $x=-2$ and $x=2$, so $f(x)=g(x)$ at these two values of x.
(d) The graph of f lies below or on the graph of g for $-4 \leq x \leq-2$ and for $2 \leq x \leq 3$. Thus, the intervals on which $f(x) \leq g(x)$ are $[-4,-2]$ and $[2,3]$.
(e) $f(x)=-1$ is equivalent to $y=-1$, and the points on the graph of f with y-values of -1 are $(-3,-1)$ and $(4,-1)$, so the solution of the equation $f(x)=-1$ is $x=-3$ or $x=4$.
(f) For any $x_{1}<x_{2}$ in the interval [$\left.-4,0\right]$, we have $g\left(x_{1}\right)>g\left(x_{2}\right)$. Thus, $g(x)$ is decreasing on $[-4,0]$.
(g) The domain of f is $\{x \mid-4 \leq x \leq 4\}=[-4,4]$. The range of f is $\{y \mid-2 \leq y \leq 3\}=[-2,3]$.
(h) The domain of g is $\{x \mid-4 \leq x \leq 3\}=[-4,3]$. Estimating the lowest point of the graph of g as having coordinates $(0,0.5)$, the range of g is approximately $\{y \mid 0.5 \leq y \leq 4\}=[0.5,4]$.
78. Graphs of f and g are shown. Decide whether each function is even, odd, or neither. Explain your reasoning.

Solution:

f is not an even function since it is not symmetric with respect to the y-axis. f is not an odd function since it is not symmetric about the origin. Hence, f is neither even nor odd. g is an even function because its graph is symmetric with respect to the y-axis.

