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1. Let S be the part of the surface z = tan™! (E) in the first octant satisfying 1 < z? +y? <4 and z >y > 0.
x

(a) (4%) Parametrize the surface S.

(b) (10%) Evaluate the surface integral [/:q Va2 +y2ds.

Solution:

(a) Here is a list of possible parametrizations we expect students to use.
_ -1(Y . 2, .2
e r(z,y)=(x,y,tan” | =]}, with 1<z +y“ <4 and 2>y > 0.
T

o r(u,v)=(ucosv,usinv,v), with 1<u<2and 0<wv<

o~

7
e r(z,z) = (r,rtanz,z), with 0< 2 < 1 and cosz <z <2cosz.

(b) Here we compute the surface integral with all three parametrizations above.
_ -y
r, = <1,0, T2 y2>

xT
I‘y = <0,1,7x2 +y2)

(Y —r
rxxry_<x2+y27x2+y2’1>

s y? 2 1 1+ 22+ 2
= + Fl=y—""
(z2+y?)? (22 +y?)? V2 + 2

/4 2
ﬂ\/x2+y2 dSz/]R\/1+x2+y2 dA:f f VI+r2 rdr do
9 0 1

_w(5¢5—2\/§)_w(M—\/§)
4 3 - 12

r, = (cosv,sinv, 0)
r, = (—usinv,ucosv,1)

r, X T, = (sinv, — cosv, u)

CZS:\/51112v+(3052v+u2:\/1+u2

[[S x2+y2dS:_/OW/4/;2umdudv
:77(5\/5—2\/5):7%\/%—\/5)

4 3 12

r, = (0,xsec2 z,l)
r; = (1,tan z,0)

I, Xr, = (—tanz,l,—acsec2 z>
dS = Vtan? 2 + 1 + 22 sect z = sec 2V/1 + 22 sec? 2
/4 2cosz
/] Va2+y?dS = [ f Va2 + z2tan? 2 seczV 1+ a2sec? z dx dz
S 0 c

0S 2

2cosz

/4 2cos z /AT
=f / zsec? 2V/1 + x2sec? z dx dz = / [§(1+x25ec2z)3/2] dz
0 ¢

T
oS z 0 cos z

Page 1 of 10



_77(5\/5—2\/5)_ 7(v/125 - /8)
4 3 N 12

Grading:

e For (a), it is important to remember a parametrization is not complete without the bounds. However, note
that the student’s answer might be written in (b).

(2%) for having a vector function of two variables that satisfy the equation z = tan~! (g), no partial credit.
T

But if this part is wrong, students cannot get the points for the bounds unless it is very similar to one of

the given parametrizations.

e (2%) for having correct bounds that satisfy 1 < z*+y? <4 and = >y > 0. Each minor mistake is (-1%). As
said above, if the first step of the parametrization is far from correct, then no points here.

e For (b), (5%) for finding dS, (2%) for substituting \/22 + y? correctly, and (3%) for the double integral.
The difficulty in grading (b) comes from students with wrong answers in (a).

e Fach minor mistake in finding dS is (-1%). (-2%) for each missing step. The points (5%) and (2%) for
V2?2 +y? can be earned even if (a) is incorrect (only if student wrote a vector function in (a)).

e If the answer in (a) is really wrong, then no points for the double integral. Otherwise the double integral
follows the simple (-1%) for each minor mistake and (-2%) for each major mistake.
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. 2y . x .
2. Let F(x7y) = (e — W)l"" (_ey + $2 +y2).]~

(a) (7%) Is F conservative on the upper half plane y > 07 If yes, find the function f on the upper half plane y > 0
with f(0,1) = —e such that Vf =F.

(b) (2%) Evaluate fC F - dr where C| is the line segment from (1,1) to (2,2).
1

(¢) Evaluate 95 F - dr where C' is a counterclockwise simple closed curve in R\ {(0,0)} according to the following

c
two cases. (1) (2%) Case 1: C does not enclose the point (0,0). (ii) (8%) Case 2: C encloses the point (0, 0).
(d) (1%) Is F conservative on R\ {(0,0)}?

Solution:
(a) Set P(z,y)=e" - — J 5 and Q(z,y) = —e¥ + ———. Then we compute that
2 +y 2 +y
oP  2(x® +y*) -2y(2y) _ 2(y* - 2?)
dy (22+y2)2 (22 +y?)?
0Q _ 2(2® +y°) - 2x(2x)  2(y? - 2?)
or (22 +y?)? (22 +y2)?
. . . o 0 oQ
Since P and @ have continuous first-order partial derivatives and - on the upper half plane y > 0 and
x

the upper half plane y > 0 is an simple-connected region, we have F is conservative. (2%)
From Vf =F, we have
2y 2x

— T _ —
fm_e x2+y27 fy_ e’ +

(1%)

2+ 92’

Integrating the first equation with respect to x, we obtain
x

Flag) =et -2t (£) + gy). (2%)
Y

Then we differentiate f(x,y) with respect to y to get
2x ,
=——+ )
fy xQ + y2 g (y)
So we have ¢'(y) = —e¥ and g(y) = —e¥ + K where K is some constants. (1%)
Since f(0,1) = —e, we have K = -1. Therefore,

T

f(z,y) =" —e¥—2tan™" (5) -1. (1%)

(b) From (a), we have F is conservative and C] is a smooth curve on the upper half plane y > 0. By the
Fundamental Theorem for line integrals (1%), we have

01F-dr:/01 Vf-dr=f(2,2)- f(1,1)=0. (1%)

(¢)-(i) For any simple closed curve C' in R*~ {(0,0)} that does not enclosed (0,0). Let D be the region bounded

P
by C. By Green’s theorem and Z—Q = % on D (1%), we have
€ Y

y%Fdr:/fD(gg—aa];)dA:f[DOdA:O. (1%)

(c)-(ii) Now we consider C' is a positively oriented simple closed curve in R? \ {(0,0)} that enclosed (0,0). Set
C, : 22 +y? = r? where r is small enough such that C, is inside C' and D is the region bounded by C' and C,.
(1%) We parametrize C,. by (rcosf,rsinf), 0< 6 < 2. (1%) Then

27
jg F-dr = [ F(rcosf,rsind) - (-rsinf,rcosd)dd (2%)
" 0

2 2sin 6 ; 2cos
f (ercos? - Zony ,—em sl 2eosY )+ {=rsinf,rcosf)db
0 r r

2 .
[ (—rsin@e"cose—Tcoseersme+2) dd (1%)
0

= el 9g]’T = (¢ — 1+ dr) - (¢~ 1) = 4m. (1%)
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9Q

Since P and @ have continuous first-order partial derivatives and — = m on D, by Green’s theorem, we obtain
€ Y

o:ffj)(g—g)d/hﬁpdr—j%p-dr (1%)

Therefore, we obtain that

jch-dr:ygch-drzélw. (1%)

(d) From (c)-(ii), we have jé; F-dr = 47 # 0 (1%) for a closed curve in R~ {(0,0)} that enclosed (0,0). Therefore,

F is not conservative on R\ {(0,0)}.
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3. Let F(x,y,2) = (2z-y)i+ (2y +2)j+ 2’ k. Consider surfaces S; and Ss.
S is the part of the ellipsoid 222 + y? + 22 = 4 above the plane z = y + 2 with upward orientation.
S is the part of the plane z = y + 2 inside the ellipsoid 2z + y* + 2% = 4 with upward orientation.

(a) (5%) Parametrize the surface Ss. (b) (10%) Compute ﬂ curlF - dS directly.
Sa

(¢) (2%) Find ml curlF - dS.

Solution:

(a) Since (z,y,z) is in 222 +y? + 22 <4 on z = y + 2, we can deduce that z and y satisfy
202+t + 22 <4
=227 +y? + (y+2)2 <4
s2e(y+1)2<1

The parameterized surface of Sy is r(z,y) = zi+yj+y+2k with (z,y) e D = {(z,y)|-1 <z <-V1-22-1<
y<VvV1-a2-1}.

(1pt) Find D.

(2pt) Simplify D to a circle. They need this in Question (b), the grader has to check if they put
their answer in Question (b).

(2pt) Parameterized surface r.

\

(b) Compute r, and ry.

re=1
ry=j+k
Thus, r; x ry = —j + k. Since the orientation defined on Sy is upward, this vector is what we want.
Compute curl(F) :
i j k
0 0 0
I(F)=| =— —
curl(F) Ox dy 0z
20—y 2y+z x

By the definition of the surface integral, we have

//:9 Fds:[fDF'(Tﬂcx’”y)dA:/]DZx+ldA

1 ,Vima?-1
= f f 2xdydx + A(D)
-1 J-V1-22-1

1
= f 20(2V1—22)de + 7
-1

=T

(2pt) Compute 7, and 7.
(2pt) Compute 75 x .
(2pt) Compute curl(F).

(1Ipt) Any sign to indicate that the student know f.[s FdS = [[D F - (ry xry)dA.

(2pt) Give a correct upper limit and lower limit for the double integral

(2pt) Correctly evaluate the integral.
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(c) Since the curl(F') is continuous and the surface Sy and Sy share the same boundary, we have f/s FdF =
1

f/s FdF by Stokes’ theorem.
2

(1pt) Mention that curl(F') is continuous or the surface S; and Ss share the same boundary.

(1pt) Mention using Stokes’ theorem.
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4. Let S be the part of the surface z = 4 — 22 — y? in the first octant with upward orientation.

(a) (6%) Parametrize the surface S and find the unit normal vector n(z,y, z).
(b) (2%) Find a vector field F(x,y,2) = (0,0, f(z,y, z)) such that

/]LdS:f/.F'ndS:f/F'dS.
S \/4r? +4y2 + 1 s s

(¢) (6%) Use the Divergence Theorem to show that

[ ——=E——as- [[[ wyav
S \/4x? +4y? + 1 E
where F is the solid in the first octant satisfying 0< z<4-2?-y? , 0<y<Vd-22, 0<z<2.

(d) (6%) Evaluate cither ff W gSor fff zy dV directly.
§ /I + 42 + 1 E

Solution:

(a) There are multiple possible parametrization choices but the rest of the problem suggests using
r(z,y) = (x,y,4—x2—y2) o2t eyi<d, 2y>0.
r, =(1,0,-2z)
ry =(0,1,-2y)
ry xr, = (2z,2y,1)
1

n(z,y,2) = ———ees
Var? +4y2 + 1

(22,2y,1).

(b) For the given vector field F(x,y,2) = (0,0, f(z,y, 2)),

1 f(z,y,2)

F-n=(0,0,f(z,y,2)) ———==(22,2y,1) = ———.
Var? +4y? + 1 VAar? + 492 +1

Hence f(x,y,z) = xyz will make the equations true.

(c) To use the Divergence Theorem, we need a closed surface. S is not closed so we need to add other surfaces.

Let S1 be the face of E with x =0, S5 be the face of F with y = 0, and S3 be the face of E with z = 0. Since
f(z,y,z) is equal to zero on S, So, and S3, the outward flux of F across them will be zero.

Therefore the equation is true using the given flux in (b), the Divergence Theorem on F(z,y, z) = (0,0, zyz), and
the solid E (whose boundary is S, S1, Sa, and S3). Note that divF = xy.

(d) We will evaluate both.
xyz 22
] i) da
—/[S Var? +4y2 + 1 22+y2<4,2,y20 zy(4 -2 -y")

w2 2
=f / r?cosOsin@(4 —r2) r dr df
0 0
/2 2
=f cos 0sin 0 d@f 473 — 5 dr
0 0

1
4e-3)-3
2 3 3
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/2 2 pd-r?
/[fxy dV:f / [ r?cosOsinb r dz dr db
E 0 o Jo

/2 2
= f cosfsin @ d@/ ar® = dr
0 0

1
:,(16_2):§
2 3 3

Grading:

e For (a), (2%) for writing a correct r, (2%) for bounds of the parametrization (might be written in later
parts of their answer), and (2%) for finding n(z,y, z). It is okay if they decide to use variables other than
x,Y, 2.

e For (b), all or nothing, no partial credit.

e For (c), (3%) for understanding OF and discussing the flux through each face. (3%) for finding divF and
showing understanding of the Divergence Theorem. If student decides to show equality by evaluating both
sides, they can get (3%) in (c).

e Computation of the multiple integral uses the simple (-1%) for each minor mistake and (-2%) for each
major mistake.
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5. Consider the power series

_ — (_1)n n+
f(w)—gom(%—lf g

(a) (5%) Find its radius of convergence which is denoted by r.
1
(b) (3%) Does the power series converge at = = 3 +7? Explain your answer.

(¢) (4%) Find f(1). (Hint: Compare f(1) with the Taylor series of arctanz at 0.)

the alternating series test, the power series converges when = = 3 + 7.

1
(1 pt for plugging z = 3 + 7 into the power series.

3
1 pt for stating that {L} is decreasing and lim V3 =0
2n+1 n—oo 21+ 1

1 pt for deriving the convergence of the power series by the alternating series test.)

="
f(l)_,;)(zml)?,n'

Note that

oo
arctan(z Z 27”1.

Hence

- 1)" 21 < (=n"
arctan e = R ——
f 7;) 2n+1 f 7§(2n+1)3”¢§

\/_
Therefore f(1) =3 arctan( 7 i

(1 pt for f(1) = T;O W 1 pt for the Maclaurin series of arctan .
V3

1.5 pts for f(1) = \/garctan(%). 0.5 pt for f(1) = ?W)

Solution:
_1)"
(a) Let a, = ¥(2x -1)®"*1. Then
(2n+1)3»
Ans1| 2n+122-1)2 |22 - 1)?
= e S n — oo
an, 2n+3 3 3
2z - 1? 1 3 1 3
Hence by the ration test, if % <lie. |z- §| < %, the power series converges. If |x — §| > %, the
power series diverges. Hence the radius of convergence is =
" 2¢ - 12
(2 pts for lim Gnrl | _ w
n—oo | @, 3
. . 22 -1 . 22 -1
1 pt for stating that the series converges if <1 and it diverges if ——— > 1
3
2 pts for the radius of convergence 7)
1 Lo
(b) When z = 3t the series is
o (=" el _ o (D"
1+V3-1)* ~ = /3
,;) (2n+1)3”( ) nz;) (2n+1)
3 V3
The above series is an alternating series. Moreover, {7} is decreasing and lim ol 0. Hence by
2n + 1 n—oco 21 +
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6. Let f(x) = /(;chos(tQ) dt.

o~

—_—

b

d

a) (3%) Write down the Taylor series of g(t) = cos(t?) centered at 0.
) (4%) Derive the Taylor series of f(x) centered at 0.

¢) (3%) Find fO13)(0).
) (3%) Let T5(x) be the 5th-degree Taylor polynomial of f(x) centered at 0. Compute T5(0.1).
) (4%)

e) (4%) We can use T5(0.1) to approximate f(0.1). Give an upper bound for |f(0.1) - T5(0.1)|.

Solution:

(%) .
oty = 3 LY

) o (t2)2n _ i (_1)nt4n

2n!

n=0
(1 pt for the Maclaurin series of cosz,
2 pts for plugging t* into the Maclaurin series of cos x.)

(b) By the term-by-term integration theorem,
2 ()" 27

_ (_1)n n _ =
f(x)'fo EO P Y s

n=0

(1 pt for replacing cos(t?) by its Maclaurin series.
1 pt for trying integrating term-by-term. 2 pts for the final answer.)

(¢) We know that the Maclaurin series of f(x) is

= fM) ,
g% —a

On the other hand, we have shown that

(_1)n 24n+1 Al

f@)=3 24,

=0 2n! 4dn+1

11

Compare the coefficients before 23 in these two power series. We obtain that

= 0. Hence, by the

113 28 5113
FEDO) (D220 gy o guali2t
113! 56! 113 56!
113 F119(0)
(1 pt for stating that the coefficient before z*° in the Maclaurin series is EETE
(_1)28 '2113
1 pt for finding that the coefficient before z''3 in the Maclaurin series is IRETER
1 pt for fA13(0).)
(d) By part (b), T5(x) =2z - -
16 1
T5(0.1)=0.2 - =02- ——.
5(0:1) =0 0 2 x 56
(1 pt for T5(x). 2 pts for T5(0.1).)
(e) Observe that f(0.1) = i (1 2 (0.1)** = i i is an alternating series
' = 2n! dn+10 2 2n!(4n + 1)54n+1 '
1 1
Moreover, the sequence {W} is decreasing and 7}1_{1010 W
alternating series estimation theorem,
1
1) -T5(0.1)| < ——.
FOD =T < 155

(1 pt for observing that f(0.1) is the sum of an alternating series.

1
1 pt for stating that the sequence {W} is decreasing and 7}1_{20 i@+ )50t

1 pt for applying the alternating series estimation theorem.
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