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1. Let S be the part of the surface z = tan−1 (
y

x
) in the first octant satisfying 1 ≤ x2

+ y2 ≤ 4 and x ≥ y ≥ 0.

(a) (4%) Parametrize the surface S.

(b) (10%) Evaluate the surface integral∬
S

√
x2 + y2 dS.

Solution:

(a) Here is a list of possible parametrizations we expect students to use.

� r(x, y) = ⟨x, y, tan−1 (
y

x
)⟩, with 1 ≤ x2

+ y2 ≤ 4 and x ≥ y ≥ 0.

� r(u, v) = ⟨u cos v, u sin v, v⟩, with 1 ≤ u ≤ 2 and 0 ≤ v ≤
π

4
.

� r(z, x) = ⟨x,x tan z, z⟩, with 0 ≤ z ≤
π

4
and cos z ≤ x ≤ 2 cos z.

(b) Here we compute the surface integral with all three parametrizations above.

rx = ⟨1,0,
−y

x2 + y2
⟩

ry = ⟨0,1,
x

x2 + y2
⟩

rx × ry = ⟨
y

x2 + y2
,
−x

x2 + y2
,1⟩

dS =

¿
Á
ÁÀ y2

(x2 + y2)2
+

x2

(x2 + y2)2
+ 1 =

√
1 + x2 + y2
√
x2 + y2

∬
S

√
x2 + y2 dS =∬

R

√
1 + x2 + y2 dA = ∫

π/4

0
∫

2

1

√
1 + r2 r dr dθ

=
π

4
(
5
√
5 − 2
√
2

3
) =

π(
√
125 −

√
8)

12

ru = ⟨cos v, sin v,0⟩

rv = ⟨−u sin v, u cos v,1⟩

ru × rv = ⟨sin v,− cos v, u⟩

dS =
√

sin2 v + cos2 v + u2 =
√
1 + u2

∬
S

√
x2 + y2 dS = ∫

π/4

0
∫

2

1
u
√
1 + u2 du dv

=
π

4
(
5
√
5 − 2
√
2

3
) =

π(
√
125 −

√
8)

12

rz = ⟨0, x sec
2 z,1⟩

rx = ⟨1, tan z,0⟩

rz × rx = ⟨− tan z,1,−x sec
2 z⟩

dS =
√

tan2 z + 1 + x2 sec4 z = sec z
√
1 + x2 sec2 z

∬
S

√
x2 + y2 dS = ∫

π/4

0
∫

2 cos z

cos z

√

x2 + x2 tan2 z sec z
√
1 + x2 sec2 z dx dz

= ∫

π/4

0
∫

2 cos z

cos z
x sec2 z

√
1 + x2 sec2 z dx dz = ∫

π/4

0
[
1

3
(1 + x2 sec2 z)3/2]

2 cos z

cos z
dz
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=
π

4
(
5
√
5 − 2
√
2

3
) =

π(
√
125 −

√
8)

12

Grading:

� For (a), it is important to remember a parametrization is not complete without the bounds. However, note
that the student’s answer might be written in (b).

� (2%) for having a vector function of two variables that satisfy the equation z = tan−1 (
y

x
), no partial credit.

But if this part is wrong, students cannot get the points for the bounds unless it is very similar to one of
the given parametrizations.

� (2%) for having correct bounds that satisfy 1 ≤ x2
+ y2 ≤ 4 and x ≥ y ≥ 0. Each minor mistake is (-1%). As

said above, if the first step of the parametrization is far from correct, then no points here.

� For (b), (5%) for finding dS, (2%) for substituting
√
x2 + y2 correctly, and (3%) for the double integral.

The difficulty in grading (b) comes from students with wrong answers in (a).

� Each minor mistake in finding dS is (-1%). (-2%) for each missing step. The points (5%) and (2%) for
√
x2 + y2 can be earned even if (a) is incorrect (only if student wrote a vector function in (a)).

� If the answer in (a) is really wrong, then no points for the double integral. Otherwise the double integral
follows the simple (-1%) for each minor mistake and (-2%) for each major mistake.
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2. Let F(x, y) = (ex −
2y

x2 + y2
) i + (−ey +

2x

x2 + y2
) j.

(a) (7%) Is F conservative on the upper half plane y > 0? If yes, find the function f on the upper half plane y > 0
with f(0,1) = −e such that ∇f = F.

(b) (2%) Evaluate ∫
C1

F ⋅ dr where C1 is the line segment from (1,1) to (2,2).

(c) Evaluate ∮
C
F ⋅ dr where C is a counterclockwise simple closed curve in R / {(0,0)} according to the following

two cases. (i) (2%) Case 1: C does not enclose the point (0,0). (ii) (8%) Case 2: C encloses the point (0,0).

(d) (1%) Is F conservative on R / {(0,0)}?

Solution:

(a) Set P (x, y) = ex −
2y

x2 + y2
and Q(x, y) = −ey +

2x

x2 + y2
. Then we compute that

∂P

∂y
= −

2(x2 + y2) − 2y(2y)

(x2 + y2)2
=
2(y2 − x2)

(x2 + y2)2
,

∂Q

∂x
=
2(x2 + y2) − 2x(2x)

(x2 + y2)2
=
2(y2 − x2)

(x2 + y2)2
.

Since P and Q have continuous first-order partial derivatives and
∂P

∂y
=
∂Q

∂x
on the upper half plane y > 0 and

the upper half plane y > 0 is an simple-connected region, we have F is conservative. (2%)
From ∇f = F, we have

fx = e
x
−

2y

x2 + y2
, fy = −e

y
+

2x

x2 + y2
. (1%)

Integrating the first equation with respect to x, we obtain

f(x, y) = ex − 2 tan−1 (
x

y
) + g(y). (2%)

Then we differentiate f(x, y) with respect to y to get

fy =
2x

x2 + y2
+ g′(y).

So we have g′(y) = −ey and g(y) = −ey +K where K is some constants. (1%)
Since f(0,1) = −e, we have K = −1. Therefore,

f(x, y) = ex − ey − 2 tan−1 (
x

y
) − 1. (1%)

(b) From (a), we have F is conservative and C1 is a smooth curve on the upper half plane y > 0. By the
Fundamental Theorem for line integrals (1%), we have

∫
C1

F ⋅ dr = ∫
C1

∇f ⋅ dr = f(2,2) − f(1,1) = 0. (1%)

(c)-(i) For any simple closed curve C in R2
∖{(0,0)} that does not enclosed (0,0). Let D be the region bounded

by C. By Green’s theorem and
∂Q

∂x
=
∂P

∂y
on D (1%), we have

∮
C
F ⋅ dr =∬

D
(
∂Q

∂x
−
∂P

∂y
) dA =∬

D
0dA = 0. (1%)

(c)-(ii) Now we consider C is a positively oriented simple closed curve in R2
∖ {(0,0)} that enclosed (0,0). Set

Cr ∶ x
2
+ y2 = r2 where r is small enough such that Cr is inside C and D is the region bounded by C and Cr.

(1%) We parametrize Cr by ⟨r cos θ, r sin θ⟩, 0 ≤ θ ≤ 2π. (1%) Then

∮
Cr

F ⋅ dr = ∫

2π

0
F(r cos θ, r sin θ) ⋅ ⟨−r sin θ, r cos θ⟩dθ (2%)

= ∫

2π

0
⟨er cos θ −

2 sin θ

r
,−er sin θ

+
2 cos θ

r
⟩ ⋅ ⟨−r sin θ, r cos θ⟩dθ

= ∫

2π

0
(−r sin θ er cos θ − r cos θ er sin θ

+ 2) dθ (1%)

= er cos θ − er sin θ
+ 2θ]

2π

0
= (er − 1 + 4π) − (er − 1) = 4π. (1%)
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Since P and Q have continuous first-order partial derivatives and
∂Q

∂x
=
∂P

∂y
on D, by Green’s theorem, we obtain

0 =∬
D
(
∂Q

∂x
−
∂P

∂y
) dA = ∮

C
F ⋅ dr − ∮

Cr

F ⋅ dr (1%)

Therefore, we obtain that

∮
C
F ⋅ dr = ∮

Cr

F ⋅ dr = 4π. (1%)

(d) From (c)-(ii), we have ∮
C
F⋅dr = 4π ≠ 0 (1%) for a closed curve in R2

∖{(0,0)} that enclosed (0,0). Therefore,

F is not conservative on R ∖ {(0,0)}.
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3. Let F(x, y, z) = (2x − y) i + (2y + z) j + x2 k. Consider surfaces S1 and S2.
S1 is the part of the ellipsoid 2x2

+ y2 + z2 = 4 above the plane z = y + 2 with upward orientation.
S2 is the part of the plane z = y + 2 inside the ellipsoid 2x2

+ y2 + z2 = 4 with upward orientation.

(a) (5%) Parametrize the surface S2. (b) (10%) Compute∬
S2

curlF ⋅ dS directly.

(c) (2%) Find∬
S1

curlF ⋅ dS.

Solution:

(a) Since (x, y, z) is in 2x2
+ y2 + z2 ≤ 4 on z = y + 2, we can deduce that x and y satisfy

2x2
+ y2 + z2 ≤ 4

⇔ 2x2
+ y2 + (y + 2)2 ≤ 4

⇔ x2
+ (y + 1)2 ≤ 1

The parameterized surface of S2 is r(x, y) = xi+yj+y+2k with (x, y) ∈D = {(x, y)∣ −1 ≤ x ≤ −
√
1 − x2 −1 ≤

y ≤
√
1 − x2 − 1}.

(1pt) Find D.

(2pt) Simplify D to a circle. They need this in Question (b), the grader has to check if they put
their answer in Question (b).

(2pt) Parameterized surface r.

(b) Compute rx and ry.

rx = i

ry = j + k

Thus, rx × ry = −j + k. Since the orientation defined on S2 is upward, this vector is what we want.

Compute curl(F ) ∶

curl(F ) =

RRRRRRRRRRRRRRRRRR

i j k
∂

∂x

∂

∂y

∂

∂z
2x − y 2y + z x2

RRRRRRRRRRRRRRRRRR

= −i − 2xj + k

By the definition of the surface integral, we have

∬
S2

FdS =∬
D
F ⋅ (rx × ry)dA =∬

D
2x + 1dA

= ∫

1

−1
∫

√
1−x2−1

−
√
1−x2−1

2xdydx +A(D)

= ∫

1

−1
2x(2

√
1 − x2)dx + π

= π

(2pt) Compute rx and ry.

(2pt) Compute rx × ry.

(2pt) Compute curl(F ).

(1pt) Any sign to indicate that the student know∬
S
FdS =∬

D
F ⋅ (rx × ry)dA.

(2pt) Give a correct upper limit and lower limit for the double integral

(2pt) Correctly evaluate the integral.
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(c) Since the curl(F ) is continuous and the surface S1 and S2 share the same boundary, we have ∬
S1

FdF =

∬
S2

FdF by Stokes’ theorem.

(1pt) Mention that curl(F ) is continuous or the surface S1 and S2 share the same boundary.

(1pt) Mention using Stokes’ theorem.
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4. Let S be the part of the surface z = 4 − x2
− y2 in the first octant with upward orientation.

(a) (6%) Parametrize the surface S and find the unit normal vector n(x, y, z).

(b) (2%) Find a vector field F(x, y, z) = ⟨0,0, f(x, y, z)⟩ such that

∬
S

xyz
√
4x2 + 4y2 + 1

dS =∬
S
F ⋅ n dS =∬

S
F ⋅ dS.

(c) (6%) Use the Divergence Theorem to show that

∬
S

xyz
√
4x2 + 4y2 + 1

dS =∭
E
xy dV

where E is the solid in the first octant satisfying 0 ≤ z ≤ 4 − x2
− y2 , 0 ≤ y ≤

√
4 − x2 , 0 ≤ x ≤ 2.

(d) (6%) Evaluate either∬
S

xyz
√
4x2 + 4y2 + 1

dS or∭
E
xy dV directly.

Solution:

(a) There are multiple possible parametrization choices but the rest of the problem suggests using

r(x, y) = ⟨x, y,4 − x2
− y2⟩ , x2

+ y2 ≤ 4 , x, y ≥ 0.

rx = ⟨1,0,−2x⟩

ry = ⟨0,1,−2y⟩

rx × ry = ⟨2x,2y,1⟩

n(x, y, z) =
1

√
4x2 + 4y2 + 1

⟨2x,2y,1⟩ .

(b) For the given vector field F(x, y, z) = ⟨0,0, f(x, y, z)⟩,

F ⋅ n = ⟨0,0, f(x, y, z)⟩ ⋅
1

√
4x2 + 4y2 + 1

⟨2x,2y,1⟩ =
f(x, y, z)

√
4x2 + 4y2 + 1

.

Hence f(x, y, z) = xyz will make the equations true.

(c) To use the Divergence Theorem, we need a closed surface. S is not closed so we need to add other surfaces.

Let S1 be the face of E with x = 0, S2 be the face of E with y = 0, and S3 be the face of E with z = 0. Since
f(x, y, z) is equal to zero on S1, S2, and S3, the outward flux of F across them will be zero.

Therefore the equation is true using the given flux in (b), the Divergence Theorem on F(x, y, z) = ⟨0,0, xyz⟩, and
the solid E (whose boundary is S, S1, S2, and S3). Note that divF = xy.

(d) We will evaluate both.

∬
S

xyz
√
4x2 + 4y2 + 1

dS =∬
x2+y2≤4,x,y≥0

xy(4 − x2
− y2) dA

= ∫

π/2

0
∫

2

0
r2 cos θ sin θ(4 − r2) r dr dθ

= ∫

π/2

0
cos θ sin θ dθ∫

2

0
4r3 − r5 dr

=
1

2
(16 −

32

3
) =

8

3
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∭
E
xy dV = ∫

π/2

0
∫

2

0
∫

4−r2

0
r2 cos θ sin θ r dz dr dθ

= ∫

π/2

0
cos θ sin θ dθ∫

2

0
4r3 − r5 dr

=
1

2
(16 −

32

3
) =

8

3

Grading:

� For (a), (2%) for writing a correct r, (2%) for bounds of the parametrization (might be written in later
parts of their answer), and (2%) for finding n(x, y, z). It is okay if they decide to use variables other than
x, y, z.

� For (b), all or nothing, no partial credit.

� For (c), (3%) for understanding ∂E and discussing the flux through each face. (3%) for finding divF and
showing understanding of the Divergence Theorem. If student decides to show equality by evaluating both
sides, they can get (3%) in (c).

� Computation of the multiple integral uses the simple (-1%) for each minor mistake and (-2%) for each
major mistake.
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5. Consider the power series

f(x) =
∞

∑
n=0

(−1)n

(2n + 1)3n
(2x − 1)2n+1.

(a) (5%) Find its radius of convergence which is denoted by r.

(b) (3%) Does the power series converge at x =
1

2
+ r? Explain your answer.

(c) (4%) Find f(1). (Hint: Compare f(1) with the Taylor series of arctanx at 0.)

Solution:

(a) Let an =
(−1)n

(2n + 1)3n
(2x − 1)2n+1. Then

∣
an+1
an
∣ =

2n + 1

2n + 3

∣2x − 1∣2

3
Ð→
∣2x − 1∣2

3
as n→∞.

Hence by the ration test, if
∣2x − 1∣2

3
< 1 i.e. ∣x −

1

2
∣ <

√
3

2
, the power series converges. If ∣x −

1

2
∣ >

√
3

2
, the

power series diverges. Hence the radius of convergence is

√
3

2
.

(2 pts for lim
n→∞

∣
an+1
an
∣ =
∣2x − 1∣2

3
.

1 pt for stating that the series converges if
∣2x − 1∣2

3
< 1 and it diverges if

∣2x − 1∣2

3
> 1.

2 pts for the radius of convergence

√
3

2
.)

(b) When x =
1

2
+ r, the series is

∞

∑
n=0

(−1)n

(2n + 1)3n
(1 +
√
3 − 1)2n+1 =

∞

∑
n=0

(−1)n

(2n + 1)

√
3.

The above series is an alternating series. Moreover, {

√
3

2n + 1
} is decreasing and lim

n→∞

√
3

2n + 1
= 0. Hence by

the alternating series test, the power series converges when x =
1

2
+ r.

(1 pt for plugging x =
1

2
+ r into the power series.

1 pt for stating that {

√
3

2n + 1
} is decreasing and lim

n→∞

√
3

2n + 1
= 0.

1 pt for deriving the convergence of the power series by the alternating series test.)

(c)

f(1) =
∞

∑
n=0

(−1)n

(2n + 1)3n
.

Note that

arctan(x) =
∞

∑
n=0

(−1)n

2n + 1
x2n+1.

Hence

arctan(
1
√
3
) =

∞

∑
n=0

(−1)n

2n + 1
(
1
√
3
)
2n+1

=
∞

∑
n=0

(−1)n

(2n + 1)3n
√
3
.

Therefore f(1) =
√
3arctan(

1
√
3
) =

√
3

6
π.

(1 pt for f(1) =
∞

∑
n=0

(−1)n

(2n + 1)3n
. 1 pt for the Maclaurin series of arctanx.

1.5 pts for f(1) =
√
3arctan(

1
√
3
). 0.5 pt for f(1) =

√
3

6
π.)

Page 9 of 10



6. Let f(x) = ∫
2x

0
cos(t2) dt.

(a) (3%) Write down the Taylor series of g(t) = cos(t2) centered at 0.

(b) (4%) Derive the Taylor series of f(x) centered at 0.

(c) (3%) Find f (113)(0).

(d) (3%) Let T5(x) be the 5th-degree Taylor polynomial of f(x) centered at 0. Compute T5(0.1).

(e) (4%) We can use T5(0.1) to approximate f(0.1). Give an upper bound for ∣f(0.1) − T5(0.1)∣.

Solution:

(a)

g(t) =
∞

∑
n=0

(−1)n

2n!
(t2)2n =

∞

∑
n=0

(−1)n

2n!
t4n.

(1 pt for the Maclaurin series of cosx,
2 pts for plugging t2 into the Maclaurin series of cosx.)

(b) By the term-by-term integration theorem,

f(x) = ∫
2x

0

∞

∑
n=0

(−1)n

2n!
t4ndt =

∞

∑
n=0

(−1)n

2n!

24n+1

4n + 1
x4n+1.

(1 pt for replacing cos(t2) by its Maclaurin series.
1 pt for trying integrating term-by-term. 2 pts for the final answer.)

(c) We know that the Maclaurin series of f(x) is

∞

∑
n=0

f (n)(0)

n!
xn.

On the other hand, we have shown that

f(x) =
∞

∑
n=0

(−1)n

2n!

24n+1

4n + 1
x4n+1.

Compare the coefficients before x113 in these two power series. We obtain that

f (113)(0)

113!
=
(−1)28

56!

2113

113
. Ô⇒ f (113)(0) = 2113

112!

56!
.

(1 pt for stating that the coefficient before x113 in the Maclaurin series is
f (113)(0)

113!
.

1 pt for finding that the coefficient before x113 in the Maclaurin series is
(−1)28

56!

2113

113
.

1 pt for f (113)(0).)

(d) By part (b), T5(x) = 2x −
16

5
x5.

T5(0.1) = 0.2 −
16

500000
= 0.2 −

1

2 × 56
.

(1 pt for T5(x). 2 pts for T5(0.1).)

(e) Observe that f(0.1) =
∞

∑
n=0

(−1)n

2n!

24n+1

4n + 1
(0.1)4n+1 =

∞

∑
n=0

(−1)n

2n!(4n + 1)54n+1
is an alternating series.

Moreover, the sequence {
1

2n!(4n + 1)54n+1
} is decreasing and lim

n→∞

1

2n!(4n + 1)54n+1
= 0. Hence, by the

alternating series estimation theorem,

∣f(0.1) − T5(0.1)∣ ≤
1

4! × 9 × 59
.

(1 pt for observing that f(0.1) is the sum of an alternating series.

1 pt for stating that the sequence {
1

2n!(4n + 1)54n+1
} is decreasing and lim

n→∞

1

2n!(4n + 1)54n+1
= 0.

1 pt for applying the alternating series estimation theorem.

1 pt for ∣f(0.1) − T5(0.1)∣ ≤
1

4! × 9 × 59
.)
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