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1. (8%) Show that, for all a ∈ R,

lim
n→∞

n

∑
k=1

a2

n + a2k
= lim

n→∞

n

∑
k=1

2a2k

n2 + a2k2
.

Solution:

We have

lim
n→∞

n

∑
k=1

a2

n + a2k
= lim

n→∞
a2

n

n

∑
k=1

1

1 + a2

n
k
= ∫

a2

0

1

1 + t
dt

= ln(1 + a2).

lim
n→∞

n

∑
k=1

2a2k

n2 + a2k2
= lim

n→∞
a

n

n

∑
k=1

2 a
n
k

1 + ( a
n
k)2
= ∫

a

0

2t

1 + t2
dt

= ln(1 + a2).

[Proceed to rewrite the sums into Riemann sums by taking the factor
1

n
out of the sum-symbol ∑: (+2);

convert the first sum into a definite integral correctly: (+2); compute the first definite integral correctly: (+1);

convert the second sum into a definite integral correctly: (+2); compute the second definite integral correctly:
(+1).]

2. (8%) Find all functions f ∶ R→ R and constants a ∈ R that satisfy the equality

∫

2x−1

a
f ′(t + 1)e−t dt = x2

− 1.

Solution:

If a = 2x − 1, then the definite integral will be zero. This means that x = ±1, hence a = −3 or 1.

By taking the derivative with respect to x, we get

f ′(2x − 1 + 1)e−(2x−1) ⋅ 2 = 2x

f ′(2x) = xe2x−1

f ′(x) =
1

2
xex−1

f(x) =
1

2
∫ xex−1 dx =

1

2
(xex−1 − ex−1) +C

Therefore the final answer is

a = −3 or 1, f(x) =
ex−1

2
(x − 1) +C for any constant C.

Grading:

� Values of a is 3% (Note that they can find the values of a via finding f first, then integrate).

� Using the FTC part 1 correctly is 2%.

� Finding the functions f is 3% (-1% if the student leaves the answer as f(2x) = ⋯).

� Each clearly minor mistake is -0.5%, each conceptual mistake is -1%.

� Students can also start the problem with integration by parts, but it will make the process very messy.
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3. Find the following integrals.

(a) (5%) ∫ tan4 xdx. (b) (6%) ∫
1 +
√
x

1 + 3
√
x
dx (c) (8%) ∫

1

0
x5
√
1 − x4 dx

Solution:

(a) Solution 1:

∫ tan4 x dx = ∫ tan2 x(sec2 −1) dx = ∫ tan2 x sec2 x dx − ∫ tan2 x dx

u=tanx, du=sec2 xdx
=

1

3
tan3 x − ∫ (sec

2 x − 1) dx =
1

3
tan3 x − tanx + x +C.

( 1 pt for tan4 x = tan2 x(sec2 x − 1).

2 pts for ∫ tan2 x sec2 x dx =
1

3
tan3 x +C.

2 pts for ∫ tan2 x dx = ∫ sec2 x − 1 dx = tanx − x +C.)

Solution 2:

∫ tan4 x dx = ∫
tan4 x

sec2 x
sec2 x dx

u=tanx
= ∫

u4

u2 + 1
du

= ∫ u2
− 1 +

1

u2 + 1
du =

u3

3
− u + arctan(u) +C =

tan3 x

3
− tanx + x +C.

(2 pts for tan4 x =
tan4 x

sec2 x
sec2 x and the substitution u = tanx.

2 pts for integrating
u4

u2 + 1
.

1 pt for substituting u = tanx and the final answer.)

(b) Let u = x
1
6 . Then x = u6 and dx = 6u5 du.

∫
1 +
√
x

1 + 3
√
x
dx = ∫

1 + u3

1 + u2
6u5 du = 6∫ u6

− u4
+ u3

+ u2
− u − 1 +

u + 1

u2 + 1
du

= 6(
u7

7
−
u5

5
+
u4

4
+
u3

3
−
u2

2
− u +

1

2
ln(u2

+ 1) + arctanu) +C

= 6(
x

7
6

7
−
x

5
6

5
+
x

2
3

4
+

√
x

3
−

3
√
x

2
− x

1
6 +

1

2
ln( 3
√
x + 1) + arctan(x

1
6 )) +C

(1 pt for choosing u = x
1
6 and dx = 6u5 du.

1 pt for the integrand 6
u8 + u5

u2 + 1
.

1 pt for
u8 + u5

u2 + 1
= u6

− u4
+ u3

+ u2
− u − 1 +

u + 1

u2 + 1
.

2 pts for integrating
u + 1

u2 + 1
.

1 pt for substituting u = x
1
6 and the final answer.)

(c) Let u = x2. Then du = 2x dx.

∫

1

0
x5
√
1 − x4 dx = ∫

1

0

1

2
u2
√
1 − u2 du. (2 pts)

Let u = sin θ, where −
π

2
≤ θ ≤

π

2
. Then du = cos θ dθ.

∫

1

0
u2
√
1 − u2 du = ∫

π
2

0
sin2 θ cos2 θ dθ = ∫

π
2

0

1 − cos 4θ

8
dθ =

π

16
.

Hence ∫
1

0
x5
√
1 − x4 dx =

1

2
∫

1

0
u2
√
1 − u2 du =

π

32
.
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(1 pt for choosing u = sin θ.
1 pt for the integrand sin2 θ cos2 θ.

1 pt for the upper and lower limits for θ, 0 and
π

2
.

2 pts for the identity sin2 θ cos2 θ =
1 − cos 4θ

8
or

sin2 θ cos2 θ =
1 − cos 2θ

2

1 + cos 2θ

2
=
1 − cos2 2θ

4
=
sin2 2θ

4
=
1 − cos 4θ

8
.

1 pt for the definite integral ∫

π
2

0

1 − cos 4θ

8
dθ =

π

16
.)
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4. Let k be a positive constant less than
π

2
and Rk be the region enclosed by the curves y = 1 + tanx and y = 1 + secx

between x = 0 and x = k.

(a) (5%) Consider the solid Sk obtained by rotating the region Rk about the x-axis. Find the volume of Sk and

find the limit as k approaches
π

2
.

(b) (5%) Consider the solid Tk obtained by rotating the region Rk about the y-axis. Determine whether the volume

of Tk is finite or infinite as k approaches
π

2
. (Note: you may not be able to evaluate the exact volume of Tk.)

Solution:

(a) Improper integral approach.

lim
k→(π2 )−

∫

k

0
π(1 + secx)2 − π(1 + tanx)2 dx

= lim
k→(π2 )−

π∫
k

0
(2 secx − 2 tanx + 1) dx

= lim
k→(π2 )−

π(2 ln ∣ seck + tank∣ − 2 ln ∣ seck∣ + k)

=
π2

2
+ 2π ln 2

(b) Improper integral approach.

lim
k→(π2 )−

∫

k

0
2πx(1 + secx) − 2πx(1 + tanx) dx

Since x is bounded, we can use the inequality

2πx(1 + secx) − 2πx(1 + tanx) ≤ π2
(secx − tanx)

and then use our result in (a) to prove that the volume is finite.

Grading:

� Formula for each of the volume is 2% (-1% if they are only missing a constant, otherwise all or nothing).

� If they are using an incorrect formula, then grade the rest of the problem strictly. -1% for each mistake or
missing step.

� The integral in (a) is 2% and the limit is 1% (so -1% if they didn’t write limit).

� There are many different choices of comparison in (b). They can also look at the limit of secx − tanx.
Formal wording of the comparison theorem is 2%. 1% for evaluating or explaining the convergence or
divergence of the integral of the comparison function.

� Each clearly minor mistake is -0.5%, each conceptual mistake is -1%.
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5. Let Fn = ∫ xne−x
2

dx and In = ∫
∞

0
xne−x

2

dx.

(a) (2%) Find F1.

(b) (3%) Show that for any integer n ≥ 2, Fn = −
1

2
xn−1e−x

2

+
n − 1

2
Fn−2.

(c) (5%) It is known that I0 =

√
π

2
. Find I2n where n is a positive integer.

(d) (5%) Let p ∈ R (p is not necessarily an integer anymore). Determine the range of values of p such that the
improper integral Ip converges.

Solution:

(a)

F1 = ∫ xe−x
2

dx
u=x2, du=2x dx

= ∫
1

2
e−u du = −

1

2
e−u +C = −

1

2
e−x

2

+C.

(1 pt for the substitution u = x2.
1 pt for the final answer.)

(b) By integration by parts,

Fn = ∫ xn−1xe−x
2

dx = xn−1
(
−1

2
e−x

2

) +
n − 1

2
∫ xn−2e−x

2

dx = −
1

2
xn−1e−x

2

+
n − 1

2
Fn−2.

(1 pt for splitting xne−x
2

as the product of xn−1 and xe−x
2

.
2 pts for integrating by parts and the final formula.)

(c) By the reduction formula in (a), we have

∫

t

0
x2ne−x

2

dx = −
1

2
t2n−1e−t

2

+
2n − 1

2
∫

t

0
x2n−2e−x

2

dx.

Hence

I2n = lim
t→∞∫

t

0
x2ne−x

2

dx = −
1

2
lim
t→∞ t2n−1e−t

2

+
2n − 1

2
lim
t→∞∫

t

0
x2n−2e−x

2

dx (2 pts).

If I2n−2 converges, then lim
t→∞∫

t

0
x2n−2e−x

2

dx exists and equals I2n−2. Moreover, lim
t→∞ t2n−1e−t

2

= 0. Hence, if

I2n−2 converges, then I2n also converges and

I2n =
2n − 1

2
I2n−2.

Because that I0 converges, by mathematical induction, I2n converges for all positive integer n and

I2n =
(2n − 1)(2n − 3)⋯1

2n
I0 =

(2n − 1)(2n − 3)⋯1

2n

√
π

2
.

(1 pt for deriving that the convergence of I0 implies the convergence of I2n for all positive integer n.

2 pts for I2n =
2n − 1

2
I2n−2.

2 pts for I2n =
(2n − 1)(2n − 3)⋯1

2n
I0 =

(2n − 1)(2n − 3)⋯1

2n

√
π

2
.)

(d) If p < 0, then lim
x→0+

xpe−x
2

=∞. Hence the improper integral ∫
∞

0
xpe−x

2

dx may be an improper integral of

both type I and type II. Therefore, we should write Ip as

∫

1

0
xpe−x

2

dx + ∫
∞

1
xpe−x

2

dx

and Ip converges if and only if both improper integrals are convergent.

Let’s first investigate ∫
∞

1
xpe−x

2

dx. In part (c), we have shown that I2n converges for all positive integer

n. For any p ∈R, we can find a positive integer n0 such that 2n0 > p. Then for x ≥ 1,

0 < xpe−x
2

≤ x2n0e−x
2

.
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Therefore, the convergence of I2no implies that ∫
∞

1
xpe−x

2

dx converges by the comparison theorem.

In conclusion, ∫
∞

1
xpe−x

2

dx converges for all p ∈R.

Now we consider ∫
1

0
xpe−x

2

dx. Note that

0 <
1

e
xp
≤ xpe−x

2

≤ xp for 0 < x ≤ 1.

Hence by the comparison theorem, ∫
1

0
xpe−x

2

dx converges if and only if ∫
1

0
xp dx converges. And we know

that ∫
1

0
xp dx converges if and only if p > −1. Therefore, ∫

1

0
xpe−x

2

dx is convergent if and only if p > −1.

As a result, Ip converges if and only if p > −1.

(2 pts for the convergence of ∫
∞

1
xpe−x

2

dx for all p.

3 pts for the convergence of ∫
1

0
xpe−x

2

dx if p > −1.)
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6. Let f be a continuous function on R such that f(x) ≥ 0 for all x. Suppose there exists a constant T > 0 such that

f(x + T ) = f(x) for all x ∈ R.

(a) (3%) Prove that ∫
b+kT

a+kT
e−xf(x)dx = e−kT ∫

b

a
e−xf(x)dx for any positive integer k.

(b) (2%) Let In = ∫
nT

0
e−xf(x)dx. Using (a), find In in terms of I1.

(c) (3%) Let t be a positive number and n be an integer such that nT ≤ t ≤ (n + 1)T . Prove that

1 − e−nT

1 − e−T
I1 ≤ ∫

t

0
e−xf(x)dx ≤

1 − e−(n+1)T

1 − e−T
I1.

(d) (2%) Use (c) to deduce that ∫
∞

0
e−xf(x)dx converges and express it in terms of T and I1.

(e) (6%) Use (d) to evaluate ∫
∞

0
e−x∣ sinx∣dx.

Solution:

(a) Let u = x − kT . Then

∫

b+kT

a+kT
e−xf(x)dx = ∫

b

a
e−u−kT f(u + kT )dx

= e−kT ∫
b

a
f(u + kT )dx

= e−kT ∫
b

a
f(u)du

Grading scheme.

� (1M) Use the substitution u = x − kT .

� (1M) Transform the given integral

� (1M) Overall coherence of the argument

(b) By using (a), for any a ∈ R, we have

∫

(a+1)T

aT
e−xf(x)dx = e−aT ∫

T

0
e−xf(x) = e−aT ⋅ I1.

As a result,

In = ∫
T

0
e−xf(x)dx + ∫

2T

T
e−xf(x)dx + ∫

3T

2T
e−xf(x)dx⋯+ ∫

nT

(n−1)T
e−xf(x)dx

= I1 + e
−T I1 + e−2T I1 +⋯ + e−(n−1)T I1

= I1(1 + e
−T
+⋯ + e−(n−1)T )

Grading scheme.

� (1M) Use (a) correctly on an integral of the form ∫
(a+1)T

aT
e−xf(x)dx

� (1M) Correct answer

(c) Note that e−xf(x) ≥ 0. For nT ≤ t ≤ (n + 1)T , we have In ≤ ∫
t

0
e−xf(x)dx ≤ In+1.

By using (b) and the formula of a geometric sum, we have In =
1 − e−nT

1 − e−T
⋅ I1.

Combining these imply the desired inequality,

1 − e−nT

1 − e−T
I1 ≤ ∫

t

0
e−xf(x)dx ≤

1 − e−(n+1)T

1 − e−T
I1.

Grading scheme.

� (1M) Mention e−xf(x) ≥ 0

� (1M) Use monotonicity of integrals

� (1M) Compute the geometric sum 1+e−T +⋅+e−(n−1)T (Give this credit to those who evaluated
the sum in (b).)
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(d) Let’s take n (and hence t) to ∞ in the inequality of (c).

As lim
n→∞

1 − e−nT

1 − e−T
I1 = lim

n→∞
1 − e−(n+1)T

1 − e−T
I1 =

1

1 − e−T
I1. By squeeze theorem, we have

∫

∞

0
e−xf(x)dx =

1

1 − e−T
I1

Grading scheme.

� (1M) Use Squeeze Theorem argument

� (1M) Correct answer

(e) Let f(x) = ∣ sin(x)∣. Note that in this case, we can take T = π. By using (d), we have

∫

∞

0
e−x∣ sin(x)∣dx =

1

1 − e−π ∫
π

0
e−x sin(x)dx

By integration-by-part twice, we have

∫ e−x sin(x)dx = −e−x(sin(x) + cosx) − ∫ e−x sin(x)dx ⇒ ∫ e−x sin(x)dx = −
1

2
e−x(sinx + cosx) +C.

Therefore, ∫
π

0
e−x sin(x)dx =

1 + e−π

2
. Hence,

∫

∞

0
e−x∣ sin(x)∣dx =

1 + e−π

2(1 − e−π)

Grading scheme.

� (1M) Identifying the correct ∣f(x)∣ and T

� (1M) Applying the formula in (d) correctly

� (3M) Evaluate the indefinite integral ∫ e−x sin(x)dx (Partial credits available for minor errors)

� (1M) Correct answer
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7. A patient takes 100 mg of a certain drug, which is gradually absorbed by the body and then eventually excreted out
of the body. After time t, let

� x(t) mg be the amount of drug still unabsorbed,

� y(t) mg be the amount of drug absorbed and remained in the body,

� z(t) mg be the amount of drug excreted out of the body.

It is known that the total amount of drug x(t) + y(t) + z(t) = 100 is a constant over time. Moreover, x(0) = 100,
y(0) = z(0) = 0.

(a) (3%) It is known that
dx

dt
= −0.4x. Find x(t).

(b) (7%) It is known that
dz

dt
= 0.08y. Derive a first order linear equation for y = y(t). Hence, solve for y(t).

(c) (2%) Hence, find the time when the amount of drug absorbed and remained in the body is maximized. (You
don’t need to justify maximality.)

Solution:

(a) Given x′(t) = −0.4x. By separation of variables, we have

∫
1

x
dx = ∫ −0.4dt ⇒ x = Ae−0.4t.

As x(0) = 100, we have A = 100. Thus, x(t) = 100e−0.4t.

Grading scheme.

� (2M) Writing down x = Ae−0.4t (Partial credits available)

� (1M) Showing that A = 100.

(b) Given z′(t) = 0.08y. Moreover, as x′(t) + y′(t) + z′(t) = 0, we have

−40e−0.4t + y′(t) + 0.08y = 0 ⇒ y′ + 0.08y = 40e−0.4t.

An integrating factor is given by e0.08t. Multiplying this to both sides of the above equation and integrating
gives

e0.08ty = ∫ 40e−0.32t dt = −125e−0.32t +C

As y(0) = 0, we have C = 125. Thus, y(t) = −125e−0.4t + 125e−0.08t.

Grading scheme.

� (1M) Writing down x′ + y′ + z′ = 0.

� (1M+1M) Obtaining the correct p(t), q(t) of the first order equation y′ + p(t) ⋅ y = q(t).

� (1M) Correct integrating factor

� (2M) Correct general solution for y(t)

� (1M) Correct constant C

(c) Set y′(t) = 0. We have −10e−0.4t + 10e−0.08t = 40e−0.4t. Therefore, e0.32t = 5. Hence, t =
25

8
ln 5 is a critical

number. (One can use appropriate derivative tests to deduce that a local maximum (and hence a maximum)

value is attained at t =
25

8
ln 5.)

Grading scheme.

� (2M) Correct answer t =
25

8
ln 5.
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8. In this question, we demonstrate how the method of variation of parameters works on second order linear differenti-
ation equations with non-constant coefficients.

(a) (2%) Verify that et and t + 1 satisfy the differential equation

ty′′ − (t + 1)y′ + y = 0.

(b) (4%) Let u1(t), u2(t) be such that u′1(t) ⋅ e
t
+ u′2(t) ⋅ (t + 1) = 0. Let yp(t) = u1(t) ⋅ e

t
+ u2(t) ⋅ (t + 1). Simplify

and express
ty′′p − (t + 1)y

′
p + yp

in terms of u′1(t) and u′2(t).

(c) (6%) Find the general solution to the differential equation

ty′′ − (t + 1)y′ + y = t2.

Solution:

(a) Just verify.

(b)
yp(t) = u1(t) ⋅ e

t
+ u2(t) ⋅ (t + 1)

y′p(t) = u
′
1(t) ⋅ e

t
+ u′2(t) ⋅ (t + 1) + u1(t) ⋅ e

t
+ u2(t) ⋅ 1 = u1(t)e

t
+ u2(t)

y′′p (t) = u1(t)e
t
+ u′1(t)e

t
+ u′2(t)

ty′′p − (t + 1)y
′
p + yp = t(u1(t)e

t
+ u′1(t)e

t
+ u′2(t)) − (t + 1)(u1(t)e

t
+ u2(t)) + u1(t) ⋅ e

t
+ u2(t) ⋅ (t + 1)

= u′1(t)te
t
+ tu′2(t)

(c)

Solve the system
u′1(t) ⋅ e

t
+ u′2(t) ⋅ (t + 1) = 0

u′1(t) ⋅ (te
t
) + u′2(t) ⋅ t = t

2

To get
u′1(t) = (t + 1)e

−t , u′2(t) = −1

u1(t) = −(t + 1)e
−t
− e−t +C1

u2(t) = −t +C2

Hence
y(t) = C1e

t
+C2(t + 1) − t

2
− 2t − 2

Grading:

� (a) is 1% per verify.

� (-2%) for each mistake in (b) (because it will change the student’s answer in (c)).

� (c) can be done with undetermined coefficients. In that case, (-2%) for each mistake.

� 1% for knowing the system of equations to solve. 1% for solving u′1 and u′2. 1% for integrating each. 2%
for putting all the information together as a final answer.

� Note: y(t) = C1e
t
+ C2(t + 1) − t

2 is also a solution but if students use undetermined coefficient with just
At2, then it is a lucky guess and not correct.
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