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1. Let A =
⎛
⎜
⎝

1 −1 3 0
2 0 1 1
1 3 −7 2

⎞
⎟
⎠
.

(a) (4%) Find a row echelon form (REF) of A.

(b) (2%) Find a basis of the row space of A and determine the rank of A.

(c) (4%) Find values of a, b such that v = (a, 2, b, −1) belongs to the row space of A.

Solution:

(a) A =
⎛
⎜
⎝

1 −1 3 0
2 0 1 1
1 3 −7 2

⎞
⎟
⎠

R2→R2−2R1
Ð→

⎛
⎜
⎝

1 −1 3 0
0 2 −5 1
1 3 −7 2

⎞
⎟
⎠

R3→R3−R1
Ð→

⎛
⎜
⎝

1 −1 3 0
0 2 −5 1
0 4 −10 2

⎞
⎟
⎠

R3→R3−2R2
Ð→

⎛
⎜
⎝

1 −1 3 0
0 2 −5 1
0 0 0 0

⎞
⎟
⎠
.

⎛
⎜
⎝

1 −1 3 0
0 2 −5 1
0 0 0 0

⎞
⎟
⎠
is a row echelon form of A.

(3 pts for applying row operations correctly. Students get 1 point deduction for minor mistakes in row
operations.
1 pt for a correct row echelon form of A. Please note that there are various REFs.)

(b) Nonzero row vectors of a REF consist a basis of the row space. Hence {(1,−1,3,0), (0,2,−5,1)} is a basis of
the row space of A. The rank of A is the dimension of the row space which is 2.
(1 pt for choosing nonzero row vectors as a basis. 1 pt for the rank of A. If students have wrong REF in (a)
but answer (b) with correct reasoning, they get 1 pt.)

(c) Since v belongs to the row space, we have

v = (a,2, b,−1) = x(1,−1,3,0) + y(0,2,−5,1), for some constants x, y.

Thus 2 = −x + 2y, −1 = y. We can solve that y = −1 and x = −4.

v = (a,2, b,−1) = −4(1,−1,3,0) − (0,2,−5,1) = (−4,2,−7,−1).

Hence a = −4, b = −7.
(1 pt for writing v as a linear combination of basis vectors. 1 pt for solving the coefficients of the linear
combination. 2 points for the final answer a = −4, b = −7.)

2. (10%) A is a n × n symmetric matrix. Mark ”O” for correct statements and ”X” for false statements.

(2 pts for each answer.)

(a) O If v is an eigenvector of A, then v is an eigenvector of An for all positive integers n.

(b) O If v1, v2 are eigenvectors of A with respect to different eigenvalues, then v1, v2 are orthogonal.

(c) X Suppose that B is a REF of A. Then B and A have same eigenvalues.

(d) X A2k is positive definite for all positive integers k.

(e) O If A is negative definite, then −A is positive definite.
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3. Following the steps to find the maximum value of f(x, y) =min{x,2y} under the constraint 4x2
+ 4xy + y2 = 4.

(It is already known that the maximum value exists.)

(a) (7%) Solve the optimization problem: (Don’t forget to verify NDCQ.)

Maximize x subject to x ≤ 2y, 4x2
+ 4xy + y2 = 4.

(b) (7%) Solve the optimization problem: (Don’t forget to verify NDCQ.)

Maximize 2y subject to 2y ≤ x, 4x2
+ 4xy + y2 = 4.

(c) (2%) Find the maximum value of f(x, y) =min{x,2y} on the constraint set 4x2
+ 4xy + y2 = 4.

Solution:

(a) We first check NDCQ. (You need to verify NDCQ, instead of just claiming that NDCQ is satisfied.) Suppose
that x − 2y ≤ 0 is binding. We consider the Jacobian matrix

(
8x + 4y 4x + 2y
1 −2

) .

It is of full rank 2 unless 2x+y = 0. However, the given constraint is (2x+y)2 = 4. Thus 2x+y ≠ 0 and hence
the Jacobian is of full rank.

Suppose next that x − 2y < 0. Note that the Jacobian matrix

( 8x + 4y 4x + 2y ) .

The Jacobian matrix is not of full rank only if 2x+ y = 0. Then 4x2
+ 4xy + y2 = (2x+ y)2 = 0, which violates

the constraint. Thus, we see that the Jacobian is of full rank. (2%, 1% for x − 2y ≤ 0 binding, 1% for
x − 2y < 0)

Then we consider Lagrangian

L = x − µ(4x2
+ 4xy + y2 − 4) − λ(x − 2y). (1%)

The FOC are
Lx = 1 − (8x + 4y)µ − λ = 0 (1)
Ly = −(4x + 2y)µ − (−2)λ = 0 (2)
Lµ = 4x

2
+ 4xy + y2 − 4 = 0 (3)

λ(x − 2y) = 0 (4)
x − 2y ≤ 0 (5)
λ ≥ 0 (6)

(2%)

There are two solutions, (x, y, µ, λ) = (
4

5
,
2

5
,
1

10
,
1

5
) and (x, y, µ, λ) = (−

4

5
,−

2

5
,−

1

10
,
1

5
). (2%, 1% for each)

For each excess solution, -1%, at most -2%.

(b) We first check NDCQ. Suppose that 2y − x ≤ 0 is binding. We consider the Jacobian matrix

(
8x + 4y 4x + 2y
−1 2

) .

It is of full rank 2 unless 2x+y = 0. However, the given constraint is (2x+y)2 = 4. Thus 2x+y ≠ 0 and hence
the Jacobian is of full rank.

Suppose that 2y − x ≤ 0 is binding. Then 25y2 = 4, hence y = ±
2

5
and x = ±

4

5
. Thus f(±

4

5
,±

2

5
) = ±

4

5
.

Suppose next that 2y − x < 0. Note that the Jacobian matrix

( 8x + 4y 4x + 2y ) .

The Jacobian matrix is not of full rank only if 2x+ y = 0. Then 4x2
+ 4xy + y2 = (2x+ y)2 = 0, which violates

the constraint. Thus, we see that the Jacobian is of full rank. (2%)

Then we consider Lagrangian

L = 2y − µ(4x2
+ 4xy + y2 − 4) − λ(2y − x). (1%)
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The FOC are
Lx = −(8x + 4y)µ − (−1)λ = 0 (1)
Ly = 2 − (4x + 2y)µ − 2λ = 0 (2)
Lµ = 4x

2
+ 4xy + y2 − 4 = 0 (3)

λ(2y − x) = 0 (4)
2y − x ≤ 0 (5)
λ ≥ 0 (6)

(2%)

There are two solutions, (x, y, µ, λ) = (
4

5
,
2

5
,
1

10
,
8

10
) and (x, y, µ, λ) = (−

4

5
,−

2

5
,−

1

10
,
8

10
). (2%, 1% for

each)

For each excess solution, -1%, at most -2%

(c) We have maximizer (x, y) = (
4

5
,
2

5
) in both cases. Hence fmax =

4

5
. (2%)
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4. Consider the problem :

Maximize u(x, y) = −e−2x − e−3y subject to the constraints 4x + y ≤ 10, x ≥ 0, y ≥ 0.

(a) (2%) Verify that Kuhn-Tucker’s NDCQ is valid.

(b) (2%) Write down the Kuhn-Tucker’s Lagrangian function.

(c) (4%) Write down the Kuhn-Tucker’s first order conditions.

(d) (2%) Explain why 4x + y ≤ 10 is binding at any solution to first order conditions.

(e) (8%) Solve the optimization problem.

Solution:

(a) Suppose 4x + y ≤ 10 is binding.

� If x = 0, then y = 10 and the reduced Jacobian matrix is (1) which is clearly of rank 1.

� If y = 0, then x = 2.5 and the reduced Jacobian matrix is (4) which is clearly of rank 1.

� If both x, y ≠ 0, then we have the full Jacobian matrix (4,1) which is of rank 1.

In all possible cases, the (reduced) Jacobian matrix has full rank so Kuhn-Tucker’s NDCQ is verified.
Grading Scheme.

� (0.5%+0.5%+0.5%) For listing all possible reduced Jacobian matrices

� (0.5%) Mention that all of them has full rank (or of rank 1).

(b) L̃(x, y, λ) = −e−2x − e−3y − λ(4x + y − 10).
Grading Scheme.

� All or nothing.

(c) Grading Scheme.
(2%)

x(2e−2x − 4λ) = 0 (1)

y(3e−3y − λ) = 0 (2)

λ(4x + y − 10) = 0 (3)

(1%)

2e−2x − 4λ ≤ 0 (4)

3e−3y − λ ≤ 0 (5)

(1%)

4x + y ≤ 10, x ≥ 0, y ≥ 0 (6)

λ ≥ 0 (7)

Remark. -0.5% for each calculation mistake.

(d) By (4), λ ≥ 2e−2x > 0 so (3) implies 4x + y = 10.
Grading Scheme.

� (1%) Noticing that (4) or (5) implies λ is strictly positive.

� (1%) Overall coherency and quality of the argument.

(e) � (2%) If x = 0, then y = 10. By (2), λ = 3e−30, which violates (4) that λ ≥
1

2
.
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� (2%) If y = 0, then x = 2.5. By (1), λ = e−5/2. This violates (4) that λ ≥ 3.

Therefore, we must have xy ≠ 0. (1) and (2) thus become 2e−2x = 4λ and 3e−3y = λ.

Hence,
e−2x = 6e−3y
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2%

⇒ −2x = ln 6 − 3y.

Together with 4x + y = 10, we obtain

(2%) x =
10 + 2 ln 6

7
, y =

30 − ln 6

14
, λ =

1

2
e−(20+4 ln6)/7

Since this is the only solution to the Kuhn-Tucker’s FOC, it must be the maximizer.

There are four major components of the grading scheme :

� (2%) Explain, with a correct argument, why x must be non-zero (or equivalently prove that when
x = 0, y = 0; x = 0, y ≠ 0 lead to no solutions)

� (2%) Explain, with a correct argument, why y must be non-zero (or equivalently prove that when
y = 0, x = 0; y = 0, x ≠ 0 lead to no solutions)

� (2%) In the case xy ≠ 0, derive the correct relation between x and y

� (2%) Solving for the correct maximizer.

Depending on the quality and/or accuracy of writing, marks may be taken away from each part.
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5. Suppose that (x, y, z, µ1, µ2) = (1,
√
2,1,1,0) is a maximizer to the following optimization problem:

Maximize f(x, y, z) = xy2z subject to h1(x, y, z) = x
2
+ y2 + z2 = 4 and h2(x, y, z) = x + y

2
+ z = 4.

(a) (2%) Show that NDCQ is satisfied at (x, y, z) = (1,
√
2,1).

(b) (6%) Estimate the maximum value of xy2z + 0.1y2 subject to x2
+ y2 + z2 = 4.2 and x + y2 + z = 4.1.

Solution:

(a) We consider the Jacobian matrix

(
2x 2y 2z
1 2y 1

)

At the point (1,
√
2,1,1,0),

(
2 2

√
2 2

1 2
√
2 1

)

has rank 2. So NDCQ is satisfied. (2 %).

(b) We consider the following optimization problem: Maximize xy2z + a1y
2 subjects to x2

+ y2 + z2 = a2 and
x + y2 + z = a3. (2%)

The Lagrangian is

L = xy2z + a1y
2
− µ1(x

2
+ y2 + z2 − a2) − µ2(x + y

2
+ z − a3). (1%)

When (a1, a2, a3) = (0,4,4), we have that maximum value f(1,
√
2,1) = 2. (1%)

By Envelope Theorem, we have
∂fmax

∂a1
=

∂L

∂a1
∣p = y

2
∣p = 2.

∂fmax

∂a2
=

∂L

∂a2
∣p = µ1∣p = 1.

∂fmax

∂a3
=

∂L

∂a3
∣p = µ2∣p = 0.

Thus fmax(0.1,4.2,4.1) ≈ fmax(0,4,4) + 0.1 ⋅ 2 + 0.2 ⋅ 1 + 0.1 ⋅ 0 = 2.4. (2%)
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6. Consider the following quadratic form

f(x, y, z) = x2
− 2y2 + 2xy + 2xz − 2yz.

(a) (3%) Write down the symmetric matrix A associated with the above quadratic form.

(b) (6%) Compute all the leading principal minors (LPM) of the matrix A. Hence, determine whether (0,0,0) is a
local maximum, local minimum or saddle point for f .

(c) Now subject f(x, y, z) to the constraint 2y + z = 0.

(i) (1%) Find the value of µ∗ such that (0,0,0, µ∗) is a critical point of L(x, y, z, µ).

(ii) (5%) Write down the bordered Hessian matrix at (0,0,0, µ∗).
(iii) (5%) Use the second order condition to determine whether (0,0,0) is a local maximum, local minimum or

saddle point when f is being constrained.

Solution:

(a) A =
⎛
⎜
⎝

1 1 1
1 −2 −1
1 −1 0

⎞
⎟
⎠
.

Grading Scheme :
-0.5% for each incorrect entry.

(b) LPM1 = 1, LPM2 = −3, LPM3 = −1.
As (−1)LPM1 < 0 and LPM2 < 0, the Sylvester’s criterion implies that A is indefinite. Hence, (0,0,0) is a
saddle point for q.

Grading Scheme :
(1%) For correct LPM1 and LPM2

(2%) For correct LPM3

(2%) For correct use of Sylvester’s criterion :note that a candidate needs to specify indices i, j such that
LPMi < 0 and (−1)jLPMj < 0; just saying that ‘LPM does not match the sign pattern’ without specifying
which/ what ‘sign parttern’ is considered as incomplete.)
(1%) Mentioning indefinite and hence saddle point.

(c) (i) µ∗ = 0 (1%: All or nothing)

(ii) Let L(x, y, z, µ) = f(x, y, z) − µ(2y + z) be the Lagrangian function. Let h(x, y, z) = 2y + z.

The bordered Hessian matrix (at (0,0,0)) is

⎛
⎜
⎜
⎜
⎝

0 hx hy hz

hx Lxx Lxy Lxz

hy Lxy Lyy Lyz

hz Lxz Lzy Lzz

⎞
⎟
⎟
⎟
⎠

. =

⎛
⎜
⎜
⎜
⎝

0 0 2 1
0 2 2 2
2 2 −4 −2
1 2 −2 0

⎞
⎟
⎟
⎟
⎠

.

Grading Scheme :
-1% for each incorrect entry.
No marks for students whose matrix is not even 4 × 4.

We accept the answer

⎛
⎜
⎜
⎜
⎝

0 0 −2 −1
0 2 2 2
−2 2 −4 −2
−1 2 −2 0

⎞
⎟
⎟
⎟
⎠

(the ‘border’ gets negafied).

(iii) (1%) Since there are 3 variables and 1 constraint, we need to check the last 2 LPMs. As
(0.5%) LPM3 = 2(−2) = −4
(0.5%) LPM4 = −1.
(1%) Since the LPMs have the same signs and moreover
(1%) LPM4 has the same sign as (−1)1,
(1%) the second order condition implies that (0,0,0) a local minimum.

Grading Scheme :
(1%) Knowing how many LPMs need to be checked
(0.5+0.5%) Correct values of the last two LPM
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(1%) Checking hypothesis of SOC about same/alternating signs
(1%) Checking hypothesis of SOC about matching the signs of the largest LPM with (−1)m or (−1)n,
(1%) Correct conclusion

Remark : a student gets at most 3% (for essentially knowing the statement of SOC) if their bordered
Hessian matrix was incorrect.
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7. Consider the following optimization problem:

(A) Maximize f(x, y, z) = x + 2y + z2 subject to constraints x2
+ y2 + z2 = 2 and y = 1.

Alex observes that he can plug in y = 1 and eliminate the variable y. Hence he solves another optimization problem:

(B) Maximize F (x, z) = x + 2 + z2 subject to the constraint x2
+ z2 = 1.

Cathy thinks this is a clever way to simplify the problem but she wants to carefully check that second order conditions
(SOC) for problem (A) and (B) derive the same result.

(a) (4%) Write down Lagrangian functions for problem (A) and (B) which we denote by LA(x, y, z, µ1, µ2) and
LB(x, z, µ1).

(b) (5%) Cathy has shown that if (x∗,1, z∗, µ∗1, µ
∗
2) is a solution to the FOC for problem (A), then (x∗, z∗, µ∗1) is a

solution to the FOC for problem (B).
Now write down the bordered Hessian matrix, HA, for problem (A) at (x∗,1, z∗, µ∗1, µ

∗
2), and the bordered

Hessian matrix, HB , for problem (B) at (x∗, z∗, µ∗1).
(c) (2%) Find the constant c such that

detHA(x
∗,1, z∗, µ∗1, µ

∗
2) = c ⋅ detHB(x

∗, z∗, µ∗1).

(d) (7%) Describe the second order conditions for problem (A) and (B) by filling out the table.

Optimization Problem (A) (B)
number of variables (n) 3 2

number of constraints (m) 2 1
Check the last 1 LPM(s) of HA. Check the last 1 LPM(s) of HB .
It/They should satisfy detHA < 0 It/They should satisfy detHB > 0

SOC for local maximum (i.e. (−1)n detHA > 0) (i.e. (−1)n detHB > 0)

Check the last 1 LPM(s) of HA. Check the last 1 LPM(s) of HB .
It/They should satisfy detHA > 0 It/They should satisfy detHB < 0

SOC for local minimum (i.e. (−1)m detHA > 0) (i.e. (−1)m detHB > 0)

Show that SOC for problem (A) and (B) derive the same result.

Solution:

(a)
LA(x, y, z, µ1, µ2) = x + 2y + z

2
− µ1(x

2
+ y2 + z2 − 2) − µ2(y − 1).

LB(x, z, µ1) = (x + 2 + z
2
) − µ1(x

2
+ z2 − 1).

(2 pts for LA, 2 pts for LB .)

(b)

HA =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 0 2x∗ 2 2z∗

0 0 0 1 0
2x∗ 0 −2µ∗1 0 0
2 1 0 −2µ∗1 0
2z∗ 0 0 0 2 − 2µ∗1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

HB =
⎛
⎜
⎝

0 2x∗ 2z∗

2x∗ −2µ∗1 0
2z∗ 0 2 − 2µ∗1

⎞
⎟
⎠

(3 pts for HA. 2 pts for HB . Students get 1 point deduction or 2 points deduction for minor mistakes.)

(c) To compute detHA, we can expand the determinate with respect to the second row. Then we expand the
determinate with respect to the second column. Thus

detHA = 1 ⋅ det

⎛
⎜
⎜
⎜
⎝

0 0 2x∗ 2z∗

2x∗ 0 −2µ∗1 0
2 1 0 0
2z∗ 0 0 2 − 2µ∗1

⎞
⎟
⎟
⎟
⎠

= (−1) ⋅ det
⎛
⎜
⎝

0 2x∗ 2z∗

2x∗ −2µ∗1 0
2z∗ 0 2 − 2µ∗1

⎞
⎟
⎠
= −detHB .
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Hence detHA = c ⋅ detHB where c = −1.
(1 pt for expanding detHA with respect to the second row and the second column. 1 pt for c = −1.)

(d) SOCs for problem (A) and (B) are listed in the table. Because detHA = −detHB and SOCs for local
maximum and local minimum require different signs of detHA and detHB , we conclude that SOCs derive
the same result.
(0.5 pt for each n,m in the table. 1 pt for each SOC in the table. 1 pt for arguing that SOCs derive the
same result.)
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