1．Let $\mathbf{F}(x, y, z)=e^{-y^{2}} \mathbf{i}+\left(-2 x y e^{-y^{2}}+e^{z}\right) \mathbf{j}+y e^{z} \mathbf{k}$ ．You are given that \mathbf{F} is conservative on \mathbb{R}^{3} ．
（a）(3%) Find a scalar potential function of \mathbf{F} ．
（b）(3%) Evaluate $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$ ，where C is the line segment from $(0,2,0)$ to $(4,0,3)$ ．
（c）(6%) Evaluate $\int_{C} e^{-y^{2}} \mathrm{~d} x-2 x y e^{-y^{2}} \mathrm{~d} y+y e^{z} \mathrm{~d} z$ where C is the line segment in（b）．

Solution：

（a）
Assume that $f(x, y, z)$ satisfies

$$
f_{x}=e^{-y^{2}}, \quad f_{y}=\left(-2 x y e^{-y^{2}}+e^{z}\right), \quad f_{z}=y e^{z}
$$

Then we can first obtain

$$
f(x, y, z)=\int f_{x} d x=x e^{-y^{2}}+g(y, z)
$$

Hence

$$
f_{y}=-2 x y e^{-y^{2}}+g_{y}, \quad f_{z}=g_{z} \Rightarrow g_{y}=e^{z}, g_{z}=y e^{z}
$$

Next obtain

$$
g(y, z)=\int g_{y} d y=y e^{z}+h(z)
$$

Hence

$$
g_{z}=y e^{z}+h^{\prime}(z) \Rightarrow h^{\prime}(z)=0
$$

Therefore all scalar potential functions are of the form

$$
f(x, y, z)=x e^{-y^{2}}+y e^{z}+C
$$

（b）
Method 1：Fundamental Theorem for Line Integrals

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=f(4,0,3)-f(0,2,0)=2
$$

Method 2：Direct computation
Parametrize the line segment： $\mathbf{r}(t)=\langle 4 t, 2-2 t, 3 t\rangle, 0 \leq t \leq 1$ ．

$$
\begin{gathered}
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{1}\left\langle e^{-(2-2 t)^{2}},\left(-8 t(2-2 t) e^{-(2-2 t)^{2}}+e^{3 t}\right),(2-2 t) e^{3 t}\right\rangle \cdot\langle 4,-2,3\rangle d t \\
=\int_{0}^{1} 4 e^{-(2-2 t)^{2}}-2\left(-8 t(2-2 t) e^{-(2-2 t)^{2}}+e^{3 t}\right)+3(2-2 t) e^{3 t} d t \\
=\left[4 t e^{-(2-2 t)^{2}}+(2-2 t) e^{3 t}\right]_{0}^{1}=2
\end{gathered}
$$

（c）
Use the parametrization from method 2 in part（b）．
Method 1：Fundamental Theorem for Line Integrals

$$
\begin{gathered}
\int_{C} e^{-y^{2}} d x-2 x y e^{-y^{2}} d y+y e^{z} d z=\int_{C}\left(\mathbf{F}-e^{z} \mathbf{j}\right) \cdot d \mathbf{r} \\
=2-\int_{0}^{1}-2 e^{3 t} d t=2+\frac{2}{3}\left(e^{3}-1\right)=\frac{2 e^{3}+4}{3}
\end{gathered}
$$

Method 2：Direct computation

$$
\begin{gathered}
\int_{C} e^{-y^{2}} d x-2 x y e^{-y^{2}} d y+y e^{z} d z \\
=\int_{0}^{1} 4 e^{-(2-2 t)^{2}}+16 t(2-2 t) e^{-(2-2 t)^{2}}+3(2-2 t) e^{3 t} d t
\end{gathered}
$$

$$
\begin{gathered}
=\left[4 t e^{-(2-2 t)^{2}}\right]_{0}^{1}+6 \int_{0}^{1}(1-t) e^{3 t} d t \\
=4+6\left[\frac{1}{3}(1-t) e^{3 t}+\frac{1}{9} e^{3 t}\right]_{0}^{1}=4+\frac{2}{3} e^{3}-2-\frac{2}{3}=\frac{2 e^{3}+4}{3}
\end{gathered}
$$

Grading:

- Basic distribution: (a) (3%) on finding the potential function, this includes the steps to find/verify the function. (b) (3\%) for using the fundamental theorem correctly or evaluating the line integral directly. (c) (2%) for parametrization of the line segment. (2\%) for using (b) to evaluate part of the line integral. (2\%) for completing the line integral.
- (a) must have justification. (-3\%) if no explanation is given. (-1\%) if the explanation is incomplete.
- (a) (-2%) immediately if function is wrong, student get points for (b) and (c) as long as they use the same function or compute directly.
- (b) Method 1 MUST use function from (a). Method 2 can only get points if the line integral is successfully evaluated.
- (c) the points for parametrization (2%) is in this part. Evaluating the line integral is (4\%) and students can get partial credit for finding ways to use their answer from (a) and (b).
- For everything else, (-1%) for each minor mistake and (-2%) for each concept mistake.

2. Let $\mathbf{F}(x, y)=\ln (1+y) \mathbf{i}+\frac{x y}{1+y} \mathbf{j}$.
(a) (8%) Use Green's Theorem to evaluate $\oint_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$. when C is the boundary of the triangle with vertices $(1,1)$, $(2,1),(1,3)$, oriented counterclockwisely.
(b) (2%) Let $D_{\alpha}=[0,1] \times[0, \alpha]$ where $\alpha>0$ be a rectangular region on \mathbb{R}^{2} and C_{α} be its boundary, oriented counterclockwisely. Find the value of α that minimizes the line integral $\oint_{C_{\alpha}} \mathbf{F} \cdot \mathrm{d} \mathbf{r}$.

Solution:

(a) Let D be the triangle enclosed by the vertices $(1,1),(2,1)$, and $(1,3)$. Note that the equation for the line passing $(1,3)$ and $(2,1)$ is $y=-2 x+5$, or equivalently $x=\frac{y-5}{-2}$.

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r} & =\oint_{C} \ln (1+y) \mathrm{d} x+\frac{x y}{1+y} \mathrm{~d} y \\
& =\iint_{D} \frac{y}{1+y}-\frac{1}{1+y} \mathrm{~d} A \quad(4 \text { points for Green's theorem })^{*} \\
& =\iint_{D} 1 \mathrm{~d} A-\iint_{D} \frac{2}{y+1} \mathrm{~d} A \\
& =1-2 \int_{1}^{3} \int_{1}^{\frac{y-5}{-2}} \frac{1}{y+1} \mathrm{~d} x \mathrm{~d} y \quad(2 \text { points for interated integrals }) \\
& =1-2 \int_{1}^{3} \frac{1}{y+1}\left(\frac{y-5}{-2}-1\right) \mathrm{d} y \quad(1 \text { point }) \\
& =1+\int_{1}^{3} 1-\frac{4}{y+1} \mathrm{~d} y \\
& =1+2-4 \ln (4 / 2) \\
& =3-4 \ln 2 . \quad(1 \text { point })
\end{aligned}
$$

*Deduct one point if the sign is not correct.
(b) (1 point) By Green's theorem, we would like to minimize the double integral $\iint_{D} \frac{y-1}{y+1} \mathrm{~d} A$.
(1 point) Note that the integrand $\frac{y-1}{y+1} \leq 0$ if and only if $-1<y \leq 1$. Thus, when $\alpha=1$, the integral is minimized.
3. Let $\mathbf{F}(x, y, z)=x y \mathbf{i}+y z \mathbf{j}+z x \mathbf{k}$. Let C be the curve of intersection of the surfaces $x^{2}+y^{2}=4$ and $z=y$ above the $x y$-plane, oriented counterclockwisely when viewed from above.

(a) $\mathbf{7 \%}$) Parametrize the curve C and find $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.
(b) (9%) Let S be part of the cylinder $x^{2}+y^{2}=4$ below the curve C and above the $x y$-plane, oriented away from $(0,0,0)$. Parametrize the surface S and thus evaluate, directly, the flux of $\operatorname{curl}(\mathbf{F})$ across S :

$$
\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot d \mathbf{S}
$$

(c) (4%) Let C^{\prime} be the curve obtained by projecting C onto the $x y$-plane, oriented counterclockwisely when viewed from above. By computing $\int_{C^{\prime}} \mathbf{F} \cdot d \mathbf{r}$, explain how your answers in (a) and (b) are consistent with the Stokes' Theorem.

Solution:

(a) (2M) Parametrize C by $\mathbf{r}(t)=\langle 2 \cos t, 2 \sin t, 2 \sin t\rangle$, (1M) $0 \leq t \leq \pi$. Then

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{0}^{\pi} \underbrace{\left\langle 4 \cos t \sin t, 4 \sin ^{2} t, 4 \cos t \sin t\right\rangle}_{(1 \mathrm{M})} \cdot \underbrace{\langle-2 \sin t, 2 \cos t, 2 \cos t\rangle}_{(1 \mathrm{M})} d t \\
& =\int_{0}^{\pi} 8 \cos ^{2} t \sin t d t=\underbrace{\frac{16}{3}}_{(2 \mathrm{M})} .
\end{aligned}
$$

Grading scheme for 3a.

- $(2 \mathrm{M}) *$ Correct parametrization for C
- $(1 \mathrm{M})^{* *}$ Correct range of t
- (1M) Definition of Line integral $(\vec{F}(\vec{r}(t)))$
- (1M) Definition of Line integral $\left(\vec{r}^{\prime}(t)\right)$
- $(2 \mathrm{M})^{* * *}$ Correct answer

Remarks.
(a) If $* *$ is incorrect (say a student wrote $0 \leq t \leq 2 \pi$), no points will be awarded to ${ }^{* * *}$
(b) At most 1 M will be deducted overall if a student messed up the orientation of C (and lead to a sign error)
(b) (1M) Parametrize S as $\mathbf{r}(t, z)=\langle 2 \cos t, 2 \sin t, z\rangle$ where (1M) $0 \leq t \leq \pi$,
(1M) $0 \leq z \leq 2 \sin t$.
(1M) Note $\operatorname{curl}(\mathbf{F})=-y \mathbf{i}-z \mathbf{j}-x \mathbf{k}$ and
(1M) $\mathbf{r}_{t} \times \mathbf{r}_{z}=\langle 2 \cos t, 2 \sin t, 0\rangle$.

$$
\begin{align*}
\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S} & =\int_{0}^{\pi} \int_{0}^{2 \sin t}\langle-2 \sin t,-z,-2 \cos t\rangle \cdot\langle 2 \cos t, 2 \sin t, 0\rangle d z d t \\
& =\int_{0}^{\pi} \int_{0}^{2 \sin t}-4 \sin t \cos t-2 z \sin t d z d t \\
& =\int_{0}^{\pi}-8 \sin ^{2} t \cos t-4 \sin ^{3} t d t \\
& =-\frac{16}{3} \quad(2 \mathrm{M}) \tag{2M}
\end{align*}
$$

Grading scheme for 3b.

- (1M) (a1) Correct parametrization for S
- (1M) (a2) Correct range of t
- (1M) (a3) Correct range of z
- (1M) (a4) Correct curl
- (1M) (a5) Correct $\mathbf{r}_{t} \times \mathbf{r}_{z}$
- (2M) (a6) Converting flux into a double integral
- (2M) (a7) Correct answer

Remarks.
(a) If any of (a1)-(a5) is incorrect, at most 1 M can be awarded to (a6), as long as the candidate demonstrates ability to convert a flux integral into a double integral:

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\iint_{D} \operatorname{curl} \mathbf{F}(\mathbf{r}(t, z)) \cdot\left(\mathbf{r}_{t} \times \mathbf{r}_{z}\right) d z d t
$$

However, marks will be taken away from (a6) if students miswrite $d A$ as $d S$ or $d \mathbf{S}$.
(b) At most 1 M will be deducted overall if a student messed up the orientation of S (and lead to a sign error)
(c) (1M) Parametrize C^{\prime} by $\mathbf{r}(t)=\langle 2 \cos t, 2 \sin t, 0\rangle, 0 \leq t \leq \pi$ on $x y$-plane. Then

$$
\text { (1M) } \int_{C^{\prime}} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{\pi}\langle 4 \cos t \sin t, 0,0\rangle \cdot\langle-2 \sin t, 2 \cos t, 0\rangle d t=\int_{0}^{\pi}-8 \cos t \sin ^{2} t d t=0
$$

By Stokes' Theorem

$$
\underbrace{\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\int_{C^{\prime}} \mathbf{F} \cdot d \mathbf{r}-\int_{C} \mathbf{F} \cdot d \mathbf{r}}_{(2 \mathrm{M})}=0-\frac{16}{3}=-\frac{16}{3}
$$

which equals the answer from (b).
Grading scheme for 3c.

- (1M) Correct parametrization for C^{\prime}
- (1M) Correct line integral for C^{\prime}
- (2M) Correct relation of flux of $\operatorname{curl}(\mathbf{F})$ across S with the line integrals along C and C^{\prime}.

Remarks.
In particular, it is possible to receive full marks in (c) even if (a) and (b) are incorrect.
4. In another universe, the magnitude of the gravitational force \mathbf{G} is inversely proportional to the cube of the distance from the origin. In other words,

$$
\mathbf{G}(x, y, z)=\frac{K}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}(x \mathbf{i}+y \mathbf{j}+z \mathbf{k})
$$

where K is the gravitational constant. Let $R>0$ and S_{R} be the sphere $x^{2}+y^{2}+z^{2}=R^{2}$, oriented outward.
(a) (2%) Explain why the Divergence Theorem cannot be applied to compute the flux of \mathbf{G} across the sphere S_{R}.
(b) (6%) Find the flux $\iint_{S_{R}} \mathbf{G} \cdot d \mathbf{S}$. Express your answer in terms of K and R.
(c) (3%) Suppose it is known that $\iint_{S_{5}} \mathbf{G} \cdot d \mathbf{S}=8$. Find $\iint_{S_{10}} \mathbf{G} \cdot d \mathbf{S}$.
(d) (6%) Let $U=\left\{(x, y, z) \in \mathbb{R}^{3}: 1 \leq x^{2}+y^{2}+z^{2} \leq 4\right\}$. Compute directly $\iiint_{U} \operatorname{div}(\mathbf{G}) \mathrm{d} V$ and explain how the value of this integral and your answer in (b) are consistent with the Divergence Theorem.

Solution:

(a) To apply the Divergence Theorem, \mathbf{G} needs to be C^{1} in the region enclosed by S_{R}.
$(1 \mathrm{M})$ However, \mathbf{G} is not $C^{1} /$ is undefined at $(0,0,0)$ and
(1M) S_{R} encloses ($0,0,0$).
Grading scheme for 4a.

- (1M) Pointing out $(0,0,0)$ is a 'problematic point' for \mathbf{G}.
- (1M) Pointing out S_{R} encloses/contains ($0,0,0$).
(b) $(2 \mathrm{M}) \mathbf{n}=\frac{\langle x, y, z\rangle}{R}$, so
$(1 \mathrm{M}) \mathbf{G} \cdot \mathbf{n}=\frac{K}{R} \cdot \frac{1}{x^{2}+y^{2}+z^{2}}$. Hence

$$
(3 \mathrm{M}) \iint_{S_{R}} \mathbf{G} \cdot d \mathbf{S}=\frac{K}{R} \iint_{S_{R}} \frac{1}{x^{2}+y^{2}+z^{2}} d S=\frac{K}{R^{3}} \iint_{S_{R}} 1 d S=\frac{K}{R^{3}} \cdot 4 \pi R^{2}=\frac{4 \pi K}{R} .
$$

Grading scheme for 4b.

- (2M) Correct \mathbf{n} (or $\left.\mathbf{r}_{\theta} \times \mathbf{r}_{\varphi}\right)$
- (1M) Simplifying $\mathbf{G} \cdot \mathbf{n}$ or $\mathbf{G}(\mathbf{r}(\theta, \varphi)) \cdot\left(\mathbf{r}_{\theta} \times \mathbf{r}_{\varphi}\right)$.
- (3M) Correct evaluation of the flux integral (Partial credits available)
(c) By (b), we have the outward flux across S_{R} is inversely proportional to R. Therefore,

$$
(2 \mathrm{M}) \iint_{S_{5}} \mathbf{G} \cdot d \mathbf{S}: \iint_{S_{10}} \mathbf{G} \cdot d \mathbf{S}=10: 5
$$

Hence, $\iint_{S_{10}} \mathbf{G} \cdot d \mathbf{S}=4(1 \mathrm{M})$.
Grading scheme for 4c.

- (2M) Correct (logically valid) argument explaining the flux across S_{5} and S_{10} are in the ratio 2:1.
- (1M) Correct answer.
(d) $(2 \mathrm{M}) \operatorname{div}(\mathbf{F})=-\frac{K}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}$.

By spherical coordinates,

$$
\iiint_{U} \operatorname{div}(\mathbf{G}) d V=\underbrace{\iiint_{U}-\frac{K}{\left(x^{2}+y^{2}+z^{2}\right)^{2}} \mathrm{~d} V=-K \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{1}^{2} \frac{1}{\rho^{4}} \cdot \rho^{2} \sin \phi d \rho d \phi d \theta=-2 \pi K}_{(2 \mathrm{M})}
$$

which equals to $\underbrace{\iint_{S_{2}} \mathbf{F} \cdot d \mathbf{S}-\iint_{S_{1}} \mathbf{F} \cdot d \mathbf{S}}_{(2 \mathrm{M})}=\frac{4 \pi K}{2}-\frac{4 \pi K}{1}$.
This verifies the Divergence Theorem in this case.

Grading scheme for 4 d .

- (2M) Correct $\operatorname{div}(\mathbf{F})$ (no partial credits)
- (2M) Correct evaluation of triple integrals (partial credits available)
- (2M) Writing $\iiint_{U} \operatorname{div}(\mathbf{G}) d V=\iint_{S_{2}} \mathbf{F} \cdot d \mathbf{S}-\iint_{S_{1}} \mathbf{F} \cdot d \mathbf{S}$.

5. For each of the following series, determine whether it is absolutely convergent, conditionally convergent or divergent.
(a) $(5 \%) \sum_{n=2}^{\infty} \frac{1}{n \ln n}$.
(b) $(5 \%) \sum_{n=1}^{\infty}(-1)^{n} \cdot \sin \left(\frac{1}{n^{2}}\right)$.
(c) $(6 \%) \sum_{n=1}^{\infty}(-1)^{n} \cdot\left(e^{\frac{1}{n}}-1\right)$.

Solution:

(a) We consider the function $\frac{1}{x \ln x}$. For $x \geq 2$, the function $\frac{1}{x \ln x}$ is continuous, positive, and decreasing (1 point). We see

$$
\int_{2}^{\infty} \frac{1}{x \ln x} d x=\int_{\ln 2}^{\infty} \frac{1}{t} d t=\infty, \text { with the change of variables } t=\ln x \text { (2 points). }
$$

Therefore, by the integral test, the given series diverges (2 points).
(b) First notice that $0 \leq \frac{1}{n^{2}} \leq \frac{\pi}{2}$, so $\sin \left(\frac{1}{n^{2}}\right) \geq 0$ and the given series is alternating (1 point) (or one can argue that when n is large, $\sin \left(\frac{1}{n^{2}}\right)$ is positive). Apparently, $\sin \left(\frac{1}{n^{2}}\right)$ is decreasing to 0 as $n \rightarrow \infty$ (1 point), so the given series is convergent by the alternating series test (1 point).
For the absolute convergence, we look at $\sum_{n=1}^{\infty} \sin \left(\frac{1}{n^{2}}\right)$. Since $\sin \left(\frac{1}{n^{2}}\right) / \frac{1}{n^{2}} \rightarrow 1>0$ as $n \rightarrow \infty$, the series $\sum_{n=1}^{\infty} \sin \left(\frac{1}{n^{2}}\right)$ is convergent by the limit comparison test (1 point). Or one can use the inequality $\sin \left(\frac{1}{n^{2}}\right) \leq \frac{1}{n^{2}}$ and the fact $\sum \frac{1}{n^{2}}$ is convergent.
Therefore, the series $\sum_{n=1}^{\infty}(-1)^{n} \sin \left(\frac{1}{n^{2}}\right)$ is absolutely convergent (1 point). Note: one can also just show the absolute convergence.
(c) Notice that $\frac{1}{n}>0$, so $e^{\frac{1}{n}}-1>0$ and the given series is alternating (1 point). Apparently, $e^{\frac{1}{n}}-1$ is decreasing to 0 as $n \rightarrow \infty$ (1 point), so the given series is convergent by the alternating series test (1 point).
For the absolute convergence, we look at $\sum_{n=1}^{\infty} e^{\frac{1}{n}}-1$. Since

$$
\lim _{n \rightarrow \infty} \frac{e^{\frac{1}{n}}-1}{\frac{1}{n}}=\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=\lim _{x \rightarrow 0} e^{x}=1>0(2 \text { points })
$$

the series $\sum_{n=1}^{\infty} e^{\frac{1}{n}}-1$ is divergent by the limit comparison test.
So the series $\sum_{n=1}^{\infty}(-1)^{n}\left(e^{\frac{1}{n}}-1\right)$ is conditionally convergent (1 point).
6. Let $f(x)=\int_{0}^{x} \sqrt{1+t^{3}} \mathrm{~d} t$.
(a) (5\%) Write down the Maclaurin series for $f(x)$ and specify its radius of convergence. You may express your answer in binomial coefficients $\binom{a}{k}$.
(b) (5%) Find $f^{(7)}(0)$. Express your answer as a rational number $\frac{a}{b}$ with explicit integers a, b.
(c) (5%) Express $f(0.1)$ as an alternating series $b_{0}+\sum_{k=1}^{\infty}(-1)^{k-1} b_{k}$ for some $b_{k} \geq 0$. Prove that $\left\{b_{k}\right\}_{k=0}^{\infty}$ is a decreasing sequence and find $\lim _{k \rightarrow \infty} b_{k}$.
(d) (2%) Hence, determine how many terms of the series in (c) are needed in order to estimate the value of $f(0.1)$ up to an error of 10^{-5}.

Solution:

(a)

$$
\begin{aligned}
f(x) & =\int_{0}^{x} \sqrt{1+t^{3}} d t=\int_{0}^{x} \sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n} t^{3 n} d t \text { (1 point) } \\
& =\sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n} \int_{0}^{x} t^{3 n} d t=\sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n} \frac{1}{3 n+1} x^{3 n+1} \cdot(2 \text { points })
\end{aligned}
$$

By the term by term integration theorem, the radius of convergence of $\sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n} \frac{1}{3 n+1} x^{3 n+1}$ and the radius of convergence of $\sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n} x^{3 n}$ are the same. And by the binomial series we know that $\sum\binom{\frac{1}{2}}{n} x^{3 n}$ converges if $\left|x^{3}\right|<1$ and diverges if $\left|x^{3}\right|>1$ which means that the radius of convergence of $\sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n} x^{3 n}$ is 1 . Hence the radius of convergence of $\sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n} \frac{1}{3 n+1} x^{3 n}$ is $1 . \quad$ (2 points)
Or we can use the Ratio Test to find the radius of convergence of $\sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n} \frac{1}{3 n+1} x^{3 n+1}$.
Let $a_{n}=\binom{\frac{1}{2}}{n} \frac{1}{3 n+1} x^{3 n+1}$.
$\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{\frac{1}{2}-n}{n+1}\right| \cdot \frac{3 n+1}{3 n+4} \cdot|x|^{3} \rightarrow|x|^{3}$ as $n \rightarrow \infty$.
Hence $\sum a_{n}$ converges absolutely if $|x|^{3}<1$ and $\sum a_{n}$ diverges if $|x|^{3}>1$. Thus the radius of convergence of $\sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n} \frac{1}{3 n+1} x^{3 n+1}$ is 1 . (2 points)
(b) Since $f(x)=\sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n} \frac{1}{3 n+1} x^{3 n+1}=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}$, compare coefficients in front of x^{7} and we obtain $\binom{\frac{1}{2}}{2} \frac{1}{7}=$ $\frac{f^{(7)}(0)}{7!} .(2$ points $)$
Hence $f^{(7)}(0)=\binom{\frac{1}{2}}{2} \cdot 6!=\frac{\frac{1}{2} \cdot\left(-\frac{1}{2}\right)}{2!} 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6=-90 \quad(3$ points)
Thus $f^{(7)}(0)=-90=\frac{a}{b}$ where $a=-90, b=1$.
(c) $f(0.1)=\sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k} \frac{1}{3 k+1} \frac{1}{10^{3 k+1}}$

Note that $\binom{\frac{1}{2}}{k} \frac{1}{3 k+1} \frac{1}{10^{3 k+1}}=\frac{\frac{1}{2} \cdot\left(-\frac{1}{2}\right) \cdots\left(\frac{1}{2}-k+1\right)}{k!(3 k+1) 10^{3 k+1}}$ and $\binom{\frac{1}{2}}{0} \frac{1}{3 \cdot 0+1} \frac{1}{10^{3 \cdot 0+1}}=\frac{1}{10}$ (1 point)
Hence $f(0.1)=\frac{1}{10}+\sum_{k=1}^{\infty}(-1)^{k+1} b_{k}$ where $b_{1}=\frac{1}{8} \times \frac{1}{10^{4}}$ and $b_{k}=\frac{1 \cdot 3 \cdot 5 \cdots(2 k-3)}{2^{k} k!(3 k+1) 10^{3 k+1}}$, for $k \geq 2$. (1 point)
$\frac{b_{k+1}}{b_{k}}=\frac{(2 k-1)(3 k+1)}{2(k+1)(3 k+4) 10^{3}}<\frac{1}{10^{3}}<1$. Hence $\left\{b_{k}\right\}$ is decreasing. (1 point)
Moreover, $0<b_{k}=\frac{1 \cdot 3 \cdot 5 \cdots(2 k-3)}{2 \cdot 4 \cdot 6 \cdots(2 k-2) \cdot(2 k)} \cdot \frac{1}{(3 k+1) 10^{3 k+1}}<\frac{1}{10^{3 k+1}}$
Thus $\lim _{k \rightarrow \infty} b_{k}=0$ by the squeeze theorem. (2 points)
(d) From (c), we can apply alternating series estimation theorem on $f(0.1)=\frac{1}{10}+\sum_{k=1}^{\infty}(-1)^{k+1} b_{k}$.

Thus $\left|f(0.1)-\left(\frac{1}{10}+\sum_{k=1}^{n}(-1)^{k+1} b_{k}\right)\right|<b_{n+1}$ (1 point)
Since $b_{2}<\frac{1}{10^{5}}$, we can use the first two terms $\frac{1}{10}+b_{1}=\frac{1}{10}+\frac{1}{80000}$ to estimate $f(0.1)$ and the error is less than 10^{-5}. (1 point)
7. Let $a_{n}=\frac{n^{n}}{n!}$ and consider the power series $f(x)=\sum_{n=1}^{\infty} a_{n} x^{n}$.
(a) (5\%) Find the radius of convergence of $f(x)$.
(b) (2%) For $n \geq 2$, we set $s_{n}=\sum_{k=1}^{n-1} \ln (k)$. By considering the graph of $y=\ln (x)$, interpret s_{n} as an area and deduce that $s_{n}<\int_{1}^{n} \ln (x) \mathrm{d} x$.
(c) (3%) Note that $s_{n}=\ln \left((n-1)\right.$!). Use (b) to prove that $(n-1)!<\left(\frac{n}{e}\right)^{n} \cdot e$.
(d) (4%) Let $b_{n}=\frac{a_{n}}{e^{n}}$. Use (c) to determine whether the series $\sum_{n=1}^{\infty} b_{n}$ converges or not.
(e) (2\%) Prove that the sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$ is decreasing.

Hint. You may use, without proof, the fact that $\left(1+\frac{1}{n}\right)^{n}<e$ for $n>0$.
(f) (2%) Hence, find the interval of convergence of the power series $f(x)$.

Hint. You may use, without proof, the fact that $\lim _{n \rightarrow \infty} b_{n}=0$.

Solution:

(a) The ratio of the successive terms is

$$
\frac{a_{n+1} x^{n+1}}{a_{n} x^{n}}=\frac{\frac{(n+1)^{n+1}}{(n+1)!}}{\frac{n^{n}}{n!}} x=\left(1+\frac{1}{n}\right)^{n} x
$$

so

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1} x^{n+1}}{a_{n} x^{n}}\right|=e|x|<1
$$

gives $|x|<e^{-1}$. Hence, the radius of convergence of $f(x)$ is e^{-1}.

- 1% for considering the ratio of the successive terms
- 1% for simplification of the ratio
- 1% for the considering the limit of the ratio
- 1% for getting the correct limit
- 1% for concluding the correct radius of convergence
(b) Because $\ln x$ is monotonically increasing, s_{n} is interpreted as the total area of the green rectangles below the graph of $y=\ln x$ (see the figure on the next page):

Hence,

$$
s_{n}<\int_{1}^{n} \ln x d x
$$

- 1% for sketching the rectangles with the graph
- 1% for the approximately correct shape of the graph of $y=\ln x$
(c) Since

$$
s_{n}=\ln \left(\prod_{k=1}^{n-1} k\right)=\ln ((n-1)!)
$$

and

$$
\int_{1}^{n} \ln x d x=[x \ln x-x]_{1}^{n}=n(\ln n-1)+1
$$

we obtain

$$
(n-1)!<e^{n(\ln n-1)+1}=\left(\frac{n}{e}\right)^{n} \cdot e
$$

by exponentiating both sides of the inequality of (b).

- 1% for correctly getting the anti-derivative of $\ln x$
- 1% for correctly getting $\int_{1}^{n} \ln x d x$
- 1% for deducing the conclusion by correctly exponentiating the equation of (b)
(d) By (c), we get

$$
\frac{1}{n}=\frac{(n-1)!}{n!}<\frac{\left(\frac{n}{e}\right)^{n} \cdot e}{n!}=e \cdot b_{n}
$$

Since

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

is divergent,

$$
\sum_{n=1}^{\infty} b_{n}
$$

is also divergent by Comparison Test.

- 1% for the trial of using the Comparison Test
- 1% for deducing the inequality $\frac{1}{n}<e \cdot b_{n}$ or equivalent useful inequality
- 1% for stating $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent
- 1% for the correct use of Comparison Test hence deducing the conclusion
(e) The ratio of the successive two terms of the sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$ is

$$
\frac{b_{n+1}}{b_{n}}=\frac{a_{n+1}}{a_{n} e}=\frac{1}{e}\left(1+\frac{1}{n}\right)^{n}<1
$$

Since $b_{n}>0$ for $n \geq 1$, this implies $b_{n+1}<b_{n}$, hence $\left\{b_{n}\right\}_{n=1}^{\infty}$ is decreasing.

- 1% for a trial of ratio test for b_{n}
- 1% for obtaining the inequality $\frac{b_{n+1}}{b_{n}}<1$
(f) The radius of convergence of $f(x)$ is $\frac{1}{e}$ by (a), and at the boundaries $x= \pm \frac{1}{e}$,

$$
f\left(\frac{1}{e}\right)=\sum_{n=1}^{\infty} b_{n}
$$

is divergent by (d) and

$$
f\left(-\frac{1}{e}\right)=\sum_{n=1}^{\infty}(-1)^{n} b_{n}
$$

is convergent by Alternating Series Test since $\left\{b_{n}\right\}_{n=1}^{\infty}$ is decreasing by (e) and $\lim _{n \rightarrow \infty} b_{n}=0$. Therefore, the interval of convergence of $f(x)$ is $\left[-\frac{1}{e}, \frac{1}{e}\right)$.

- 1% for the correct application of the Alternating Series Test to $f\left(-\frac{1}{e}\right)$ to prove its convergence
- 1% for arriving at the correct conclusion

