
1112 模模模組組組01-05班班班 微微微積積積分分分4 期期期考考考解解解答答答和和和評評評分分分標標標準準準

1. Consider the vector field F(x, y) =
2(x − y)

x2 + y2
i +

2(x + y)

x2 + y2
j

(a) (4%) Evaluate, directly, ∮
Cr

F ⋅ dr, where Cr is the circle x2 + y2 = r2, r > 0, oriented counterclockwise.

(b) (6%) Determine whether F is conservative on each of the following regions.

(i) {(x, y) ∈ R2 ∶ 1 < x2 + y2 < 4}

(ii) {(x, y) ∈ R2 ∶ y > 0}

In the case if F is conservative, find its scalar potential function.

(c) (6%) Let C be the portion of the curve

(x2 − y3 + 3y2 − 4)(x2 + y2 − 1) = 0

that begins at (0,2), winding the origin twice clockwise and ends at (2,3) (see figure below).

Using (a) and (b), evaluate ∫
C
F ⋅ dr.

Solution:

(a) (1M) Parametrize C by r(t) = ⟨R cos t,R sin t⟩, 0 ≤ t ≤ 2π, then

∮
C
F ⋅ dr = ∫

2π

0
⟨
2(cos t − sin t)

R
,
2(cos t + sin t)

R
⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(1M)

⋅ ⟨−R sin t,R cos t⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(1M)

, dt

= ∫
2π

0
−2 cos t sin t + 2 sin2 t + 2 cos2 t + 2 cos t sin t dt

= 4π
¯
(1M)

Grading scheme for 1a.

� (1M) Correct parametrization for C

� (1M) Definition of Line integral (F⃗ (r⃗(t)))

� (1M) Definition of Line integral (r⃗′(t))

� (1M) ***Correct answer

Remarks.

(a) At most 1M will be deducted overall if a student messed up the orientation of C (and lead to
a sign error)

(b) (i) (1M) Take R = 1.5 in (a) which is a curve inside the region for which ∮
CR

F ⋅ dr = 4π ≠ 0.

(1M) Therefore, F is not conservative on this region.
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(ii) (1M)
∂Q

∂x
=
2(x2 + y2) − 2(x + y)(2x)

(x2 + y2)2
=
2y2 − 4xy − 2x2

(x2 + y2)2

∂P

∂y
=
−2(x2 + y2) − 2(x − y)(2y)

(x2 + y2)2
=
2y2 − 4xy − 2x2

(x2 + y2)2

Since
∂Q

∂x
−
∂P

∂y
= 0 and the given region is (1M) simply-connected, we can conclude that F is conser-

vative on this region. To find the scalar potential, we set

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∂f

∂x
=

2x

x2 + y2
−

2y

x2 + y2
∂f

∂y
=

2x

x2 + y2
+

2y

x2 + y2

Ô⇒

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

f = ln(x2 + y2) − 2 tan−1
x

y
+A(y)

f = −2 tan−1
x

y
+ ln(x2 + y2) +B(x)

So we can take (2M) f(x, y) = −2 tan−1
x

y
+ ln(x2 + y2) +C

Grading scheme for 1b.

� (1M) Correct argument for (i)

� (1M) Correct conclusion for (i)

� (1M) Calculating, explicitly, either Qx or Py for (ii)

� (1M) Mentioning D is ‘simply-connected’ for (ii)

� (2M) Correct potential function (can omit ‘+C’)

Remarks.

(a) At most 1M will be deducted overall if a student messed up the orientation of C (and lead to
a sign error)

(c) Claim. Any anti-clockwisely oriented simple closed curve C that encloses origin satisfies

∮
C
F ⋅ dr = 4π

Proof. (3%) Let C ′ be a circle small enough to be fitted inside the curve.(anti-clockwise oriented) and D
be the region bounded by C and C ′.

As F is C1 on D, Generalized Green’s Theorem implies that

∮
C
F ⋅ dr − ∮

C′
F ⋅ dr =∬

D

∂Q

∂x
−
∂P

∂y
dA = 0Ô⇒ ∮

C
F ⋅ dr = ∮

C′
F ⋅ dr = 4π

(1%) Decompose C into two clockwise oriented closed curves C1, C2, a segment C3 start from (0,2) to (2,3).

� By Claim ∮
C1

F ⋅ dr = ∮
C2

F ⋅ dr = −4π

� (1%) By FTC, ∫
C3

F ⋅ dr = f(2,3) − f(0,2) = ln 13 − 2 tan−1
2

3
− ln 4 = ln

13

4
− 2 tan−1

2

3

So ∮
C
F ⋅ dr = ∮

C1

F ⋅ dr + ∮
C2

F ⋅ dr + ∫
C3

F ⋅ dr = ln
13

4
− 2 tan−1

2

3
− 8π

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(1M)

Grading scheme for 1c.

� (3M) Correct and complete argument to prove the ‘claim’ via Generalized Green’s Theorem

� (1M) Decomposing the given non-simple curve into three simple pieces.

� (1M) For using FTC to calculate the line integral along C3.

� (1M) Overall correct answer.
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2. Suppose that f(x, y) is a scalar function that has continuous second order partial derivatives for (x, y) ∈ R2.
For r > 0, let Cr be the circle x2 + y2 = r2 parametrized by r(t) = ⟨r cos(t), r sin(t)⟩, 0 ≤ t ≤ 2π.

(a) (4%) Let A(r) =
1

2πr
∮
Cr

f(x, y)ds be the ‘average value’ of f on the circle Cr. By the parametrization r(t),

write A(r) as a definite integral with respect to t. Hence, find a function g(r, t) such that

A(r) = ∫
2π

0
g(r, t)dt.

(b) (5%) Find the functions P (x, y) and Q(x, y) such that

d

dr
A(r) =

1

r
∮
Cr

P (x, y)dx +Q(x, y)dy.

Express your answers in terms of the first order partial derivatives of f(x, y).

(Hint. You may use, without proof, the fact that
d

dr
A(r) = ∫

2π

0

∂

∂r
g(r, t)dt.)

(c) (2%) Use (b) and Green’s Theorem to find a function R(x, y) such that

d

dr
A(r) =

1

r
∬

Dr

R(x, y)dA,

where Dr is the disc x2 + y2 ≤ r2. Express your answer in terms of the second order partial derivatives of f .

(d) (2%) We can show that lim
r→0+

A(r) = f(0,0). Suppose that fxx + fyy = 1 and f(0,0) = 0. Find A(r).

Solution:

(a) Note that r′(t) = (−r sin t, r cos t) and ∣r′(t)∣ = r. Thus

A(r) =
1

2πr
∫

2π

0
f(r cos t, r sin t)∣r′(t)∣dt =

1

2π
∫

2π

0
f(r cos t, r sin t)dt (3 points).

Suppose that A(r) = ∫
2π

0
g(r, t)dt. Then

1

2π
∫

2π

0
f(r cos t, r sin t)dt = ∫

2π

0
g(r, t)dt.

Hence g(r, t) =
1

2π
f(r cos t, r sin t) (1 point)

(b)

d

dr
A(r) =

1

2π
∫

2π

0

d

dr
(f(r cos t, r sin t))dt

=
1

2π
∫

2π

0
fx(r cos t, r sin t) cos t + fy(r cos t, r sin t) sin tdt. (2 points)

Suppose that
d

dr
A(r) =

1

r
∫
Cr

P (x, y)dx +Q(x, y)dy.

Then
d

dr
A(r) =

1

r
∫

2π

0
P (r cos t, r sin t)(−r sin t) +Q(r cos t, r sin t)r cos tdt

= ∫
2π

0
−P (r cos t, r sin t) sin t +Q(r cos t, r sin t) cos tdt (2 points)

∵
1

2π
∫

2π

0
fx(r cos t, r sin t) cos t + fy(r cos t, r sin t) sin tdt

= ∫
2π

0
−P (r cos t, r sin t) sin t +Q(r cos t, r sin t) cos tdt

∴ P = −
1

2π
fy, Q =

1

2π
fx (1 point)

(c)
d

dr
A(r) =

1

r
∮
Cr

P dx +Qdy =
1

r
∬

Dr

∂Q

∂x
−
∂P

∂y
dA =

1

r
∬

Dr

1

2π
(fxx + fyy)dA (1 point)

Hence R(x, y) =
1

2π
(fxx + fyy) (1 point)
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(d) Because fxx + fyy = 1,

d

dr
A(r) =

1

r
∬

Dr

1

2π
(fxx + fyy)dA =

1

r
∬

Dr

1

2π
dA =

r

2
. 1 point

Thus A(r) =
r2

4
+ c. ∵ lim

r→0+
A(r) = 0 ∴ c = 0 and A(r) =

r2

4
. (1 point)
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3. In the figure below,

� S1 is part of the plane z = x + 1 satisfying 2x2 + y2 − z2 ≤ 2 ;

� S is part of the surface 2x2 + y2 − z2 = 2 between the planes z = x + 1 and z = 5.

Both surfaces are endowed with downward orientation. Consider the vector field

F(x, y, z) = (ex − z) i + (ey + x) j + ez k.

(a) (8%) Parametrize S1 and thus compute∬
S1

curl(F) ⋅ dS.

(b) (6%) Evaluate ∬
S∪S1

curl(F) ⋅ dS.

y

x

5z

1 xz

S

1S

z

Solution:

(a) Find the intersection of z = x + 1 and 2x2 + y2 − z2 = 2. ⇒ 2x2 + y2 − (x + 1)2 = 2 ⇒ (x − 1)2 + y2 = 4.
Hence the projection of S1 onto the xy-plane is D = {(x, y)∣(x − 1)2 + y2 ≤ 4}.

Solution 1:
One parametrization of S1 is r(x, y) = (x, y, x + 1), (x, y) ∈D. (1 point for r(x, y). 2 points for D.)
rx × ry = (−1,0,1) which is upward and is in the opposite direction of the normal vector. (1 point)

Moreover, curl(F) =

RRRRRRRRRRRRRRRRR

i j k
∂

∂x

∂

∂y

∂

∂z
ex − z ey + x ez

RRRRRRRRRRRRRRRRR

= (0,−1,1) (2 points).

Hence ∬
S1

curl(F) ⋅ dS =∬
D
(0,−1,1) ⋅ (−rx × ry)dxdy (1 point)

=∬
D
−1dA = −A(D) = −4π (1 point)

Solution 2:
Another parametrization of S1 is r(r, θ) = (1 + r cos θ, r sin θ,2 + r cos θ), 0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π.
(2 points for r(r, θ), 1 point for ranges of r and θ)

rr×rθ =

RRRRRRRRRRRRR

i j k
cos θ sin θ cos θ
−r sin θ r cos θ −r sin θ

RRRRRRRRRRRRR

= (−r,0, r) which is upward and is in the opposite direction of the normal

vector. (1 point). curl(F) = (0,−1,1) (2 points)

Hence ∬
S1

curl(F) ⋅ dS = ∫
2π

0
∫

2

0
(0,−1,1) ⋅ (−rr × rθ)dr dθ (1 point)

= ∫
2π

0
∫

2

0
−r dr dθ = −4π (1 point)

Solution 3:
By Stokes’ Theorem, we know that∬

S1

curl(F) ⋅ dS = ∫
∂S1

F ⋅ dr. (1 point)

∵ S1 has downward orientation ∴ ∂S1 is oriented clockwise.
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Parametrize ∂S1 by

r(t) = (1 + 2 cos t,−2 sin t,2 + 2 cos t), 0 ≤ t ≤ 2π. (1 point).

∫
∂S1

F ⋅ dr = ∫
2π

0
F(r(t)) ⋅ r′(t)dt (1 point)

= ∫
2π

0
−2e1+2 cos t sin t + 4 sin t + 4 sin t cos t − 2e−2 sin t cos t − 2 cos t − 4 cos2 t − 2e2+2 cos t sin t dt

= −4π. (2 points)

(Computing ∬
S1

curl(F) ⋅ dS by Stokes’ Theorem can get at most 5 points because it doesn’t provide a

parametrization of S1.)

(b) Solution 1: Let S2 be the part of the plane z = 5 satisfying 2x2 +y2 ≤ 27 with downward orientation. Then
S ∪ S1 and S2 have the same oriented boundary curve. Hence by Stokes’ Theorem,

∬
S∪S1

curl(F) ⋅ dS =∬
S2

curl(F) ⋅ dS (2 points)

Because the unit normal vector of S2 is (0,0,−1),

∬
S2

curl(F) ⋅ dS =∬
S2

curl(F) ⋅ (0,0,−1)dS =∬
S2

−1dS (2 points)

= −A(S2).

Since S2 is an ellipse, the area of S2 is π ⋅
√
27 ⋅

√
27

2
=
27π
√
2
.

Hence∬
S∪S1

curl(F) ⋅ dS =∬
S2

curl(F) ⋅ dS = −A(S2) = −
27π
√
2

(2 points)

Solution 2: ∂(S ∪ S1) is the curve C with parametrization r(t) = (3

√
3

2
cos t,−3

√
3 sin t,5), 0 ≤ t ≤ 2π. (2

points).
By Stokes’ Theorem,

∬
S∪S1

curl(F) ⋅ dS = ∫
C
F ⋅ dr (1 point)

= ∫
2π

0
F(r(t)) ⋅ r′(t)dt

= ∫
2π

0
−(e3

√
3
2 cos t − 5)3

√
3

2
sin t − (e−3

√

3 sin t + 3

√
3

2
cos t)3

√
3 cos t dt (1 point)

= −
27
√
2
π (2 points)
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4. Let f(x, y, z) be a scalar field and G(x, y, z) be a vector field, both smooth (that is, partial derivatives exist in any
order). Let D be a solid region in R3 with boundary surface ∂D oriented outward.

(a) (4%) Prove that div(fG) = ∇f ⋅G + f div(G).

(b) (2%) Prove that∭
D
∇f ⋅GdV =∬

∂D
fG ⋅ dS −∭

D
f div(G)dV.

(c) (5%) Let f(x, y, z) = 4 − x2 − y2 − z2 and G(x, y, z) = sin(y + 1) i + ex+1 j + z3 k. Use (b) to evaluate

∭
D
∇f ⋅GdV where D = {(x, y, z) ∈ R3 ∶ x2 + y2 + z2 ≤ 4}.

Solution:

(a) Let G = ⟨P,Q,R⟩. Then fG = ⟨fP, fQ, fR⟩.

div(fG) = (fP )x + (fQ)y + (fR)z (1M)

= (fxP + fPx) + (fyQ + fQy) + (fzR + fRz) (1M)

= (fxP + fyQ + fzR) + f(Px +Qy +Rz) (1M)

= ∇f ⋅G + f div(G)

(1M) for overall coherence of the proof.

Grading scheme for 4a.

� (1M) Correct definition for divergence.

� (1M) Using product rule for partial derivatives.

� (1M) Grouping the terms appropriately.

� (1M) For overall coherence of the proof.

(b)

LHS =∭
D
∇f ⋅GdV

(a)
= ∭

D
div(fG) − f div(G)dV (1M)

=∭
D

div(fG)dV −∭
D
f div(G)dV

Div.Thm
= ∬

∂D
fG ⋅ dS −∭

D
f div(G)dV = RHS.

Grading scheme for 4b.

� (1M) Integrate term by term in (a).

� (1M) Indicate clearly which term to apply divergence theorem on and lead to the conclusion.

(c) By using (b), we have

∭
D
∇f ⋅GdV =∬

∂D
fG ⋅ dS −∭

D
f div(G)dV.

(1M) Since ∂D is the sphere x2 + y2 + z2 = 4, we have∬
∂D

fG ⋅ dS = 0.

(1M) On the other hand, as f ⋅ divG = (4 − x2 − y2 − z2)(3z2),

(3M)∭
D

f ⋅ div(G)dV =∭
D
(4 − x2 − y2 − z2)(3z2)dV

= ∫
2π

0
∫

π

0
∫

2

0
(4 − ρ2)(3ρ2 cos2 ϕ)ρ2 sinϕdρdϕdθ

= 2π∫
2

0
(4ρ4 − ρ6)dρ∫

π

0
3 cos2 ϕ sinϕdϕ

= 2π (
128

5
−
128

7
) ⋅ 2

Therefore,∭
D
∇f ⋅GdV = −4π (

128

5
−
128

7
) .
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Grading scheme for 4c.

� (1M) Writing∬
∂D

fG ⋅ dS = 0

� (1M) Computing f ⋅ div(G) correctly

� (3M) For correct evaluation of∭
D

f ⋅ div(G)dV (partial credits are available)
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5. In this question, you may use, without proof, the fact that {(1 +
1

n
)
n

}
∞

n=1
is an increasing sequence.

(a) (10%) Determine whether the series
∞

∑
n=1

(−1)n ⋅ (1 − n ln(1 +
1

n
))

is conditionally convergent, absolutely convergent, or divergent.

(b) (5%) Find the interval of convergence of
∞

∑
n=1

n!

nn
⋅ xn.

Solution:

(a) Let an = 1 − n ln(1 +
1

n
) = ln e − ln(1 +

1

n
)n = ln [

e

(1 + 1
n
)n
]

Since {(1 +
1

n
)n} is increasing and converges to e.

We know

(1) an > ln 1 = 0 +2分

(2) an > an+1,{an} is decreasing. +2分

(3) an → ln 1 = 0 as n→∞ +1分

By Alternating Series Test, ∑(−1)
nan converges. (+2分)

Next. ∑ ∣(−1)
nan∣ =∑an by (1)

Observe that when n is large, n ln(1 +
1

n
) = n{

1

n
−
1

2
(
1

n
)2 +

1

3
(
1

n
)3⋯}

Thus 1 − n ln(1 +
1

n
) =

1

2

1

n
−
1

3

1

n2
+⋯

以下或類似解法正確皆給3分，沒有寫到引用的定理，扣1分

(i) By Maclaurin or Taylor series expansion, an −
1

2n
−

1

3n2
+⋯, ∑an diverges since ∑

1

np
div.s. if p ≤ 1.

(ii) lim
n→∞

an
1
2n

= 1, by limit comparison test, ∑an diverges since ∑
1

np
div.s. if p ≤ 1.

Ans. ∑(−1)
nan conv.s. conditionally.

(b) Let bn =
n!

nn
> 0,

bn+1
bn
= (n + 1)

nn

(n + 1)n+1
=

1

(1 + 1
n
)n
→

1

e
as n→∞

By Ratio Test, the radius of convergence is e (+2分)

When x = ±e,
∣bn+1x

n+1∣

∣bnxn∣
=

e

(1 + 1
n
)n
> 1

That is, ∣bn+1x
n+1∣ > ∣bnx

n∣. This implies bnx
n ↛ 0 as n→∞ (+1分)

By nth term test for divergence the series div.s. when x = e (+1分) and x = −e (+1分)
Interval of conv. is (−e, e).
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6. Consider the function f(x) = ∫
x

0

1
√
1 + t3

dt.

(a) (3%) Write down the Maclaurin series of f(x) and specify its radius of convergence. (You may express your

answer in binomial coefficients (
a

k
).)

(b) (3%) What is the value of f (7)(0)? Express your answer as a rational number
a

b
with explicit integers a, b.

(c) (4%) Evaluate lim
x→0

f(x) − x

(e2x2 − 1) sin(5x2)
.

(d) (5%) Express f(0.5) as an alternating series
∞

∑
k=0

(−1)k bk for some bk ≥ 0. Prove that {bk}
∞

k=0 is a decreasing

sequence and find lim
k→∞

bk.

(e) (2%) Hence, determine how many terms of the series in (d) are needed in order to estimate f(0.5) up to an
error of 10−4. Justify your estimation.

Solution:

(a)

f(x) = ∫
x

0
(1 + t3)−

1
2 dt = ∫

x

0

∞

∑
k=0

(
− 1

2

k
) ⋅ t3k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(1M)

dt =
∞

∑
k=0

(
− 1

2

k
) ⋅

x3k+1

3k + 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(1M)

.

(1M) The radius of convergence is 1 (as an integral of a binomial series).

Grading scheme for 6a.

� (1M) Correct use of Binomial series

� (1M) Integrate correctly term-by-term

� (1M) Correct radius of convergence

(b) By Taylor’s Theorem,
f (7)(0)

7!
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
(1M)

= (
− 1

2

2
) ⋅

1

7
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(1M)

so f (7)(0) = 270 (1M).

Grading scheme for 6b.

� (1M) Correct statement of Taylor’s Theorem

� (1M) Correct coefficient of x7 from (a)

� (1M) Correct answer (as an explicit rational number)

(c) By writing down the leading term of both the numerator and denominator,

lim
x→0

f(x) − x

(e2x2 − 1) sin(5x2)
= lim

x→0

−
x4

8
+⋯

(2x2 +⋯)(5x2 +⋯)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(1+1+1M)

= −
1

80
±
(1M)

Grading scheme for 6c.

� (1M each ×3) Correct first non-zero term of the Maclaurin series for each factor

� (1M) Correct answer
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(d) Note that

∫
0.5

0
f(x)dx =

∞

∑
k=0

(
− 1

2

k
)
0.53k+1

3k + 1

=
∞

∑
k=0

− 1
2
(− 1

2
− 1)⋯(− 1

2
− k + 1)

k!
⋅
0.53k+1

3k + 1
⋯(1M)

=
∞

∑
k=0

(−1)k ⋅
1
2
( 1
2
+ 1)⋯( 1

2
+ k − 1)

k!
⋅
0.53k+1

3k + 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

bk

⋯(1M)

� As
bk+1
bk
=

1
2
+ k

k + 1
⋅
3k + 1

3k + 4
⋅ (0.5)3

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(1M)

< 1
°
(1M)

, {bk} is a decreasing seqeunce.

� (1M) As f(0.5) converges, lim
n→∞

bn = 0 by divergent test.

Grading scheme for 6d.

� (1M) for spelling out the Binomial coefficient

� (1M) for the correct bk

� (1M) for the ratio bk+1/bk

� (1M) for mentioning bk+1/bk < 1

� (1M) for writing lim
n→∞

bn = 0.

(e) By (d), f(0.5) is an alternating series and fulfills the conditions for AST. Let Rk be error incurred by
estimating with the k-th partial sum. Then

Rk ≤ ∣ak+1∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

1M

= ∣(
− 1

2

k + 1
)∣

0.53k+4

3k + 4
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

1M

For this to be less than 10−4, we can take, for example, k = 3.

Grading scheme for 6e.

� (1M) for writing Rk ≤ ak+1 (or bk+1)

� (1M) for writing out explicitly the term ak+1 or bk+1

Remark : without any valid justification, the choice of k itself doesn’t worth any marks.
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7. Let hn =
n

∑
k=1

1

k
. Consider the sequence {tn}

∞

n=1 defined by tn = hn − ln(n) = 1 +
1

2
+⋯ +

1

n
− lnn.

(a) (4%) By considering the graph y =
1

x
, interpret tn as an area and deduce that γ = lim

n→∞
tn exists.

(b) (4%) Let sn =
n

∑
k=1

(−1)k+1

k
. By expressing s2n in terms of hn and canceling out γ, find the value of

∞

∑
k=1

(−1)k+1

k
.

(c) (1%) Find lim
n→∞

hn

ln(n)
.

(d) (5%) Hence, determine whether the series
∞

∑
n=1

hn

n2
converges or not.

Solution:

(a) 2% : Prove that tn ≥ 0. Consider the upper Riemann sum :

The sum of the areas of the rectangles is hn = 1 +
1

2
+ ⋯ +

1

n
. This is larger than the area under curve

∫
n+1

1

1

x
dx = ln(n + 1). Consequently, tn = hn − ln(n) ≥ ln(n + 1) − ln(n) ≥ 0.

2% : Prove that {tn} is decreasing. Note that

tn+1 − tn =
1

n + 1
− ln(n + 1) + ln(n) =

1

n + 1
− ∫

n+1

n

1

x
dx

which is ≤ 0 because it represents the difference of the area of a ‘lower’ rectangle and the area under curve
on [n,n + 1] :

Hence, by monotone convergence theorem, lim
n→∞

tn exists.

(b) Since s2n = 1 −
1

2
+⋯ +

1

2n − 1
−

1

2n
= (1 +

1

2
+⋯ +

1

2n − 1
+

1

2n
) − (1 +

1

2
+⋯ +

1

n
) = h2n − hn (2%),

we have s2n = t2n + ln(2n) − tn − ln(n) = t2n − tn + ln 2 and hence

lim
n→∞

s2n = γ − γ + ln 2 = ln 2.(2%)

Consequently, as the alternative harmonic series converges, we have lim
n→∞

sn = lim
n→∞

s2n = ln 2.

(c) lim
n→∞

hn

lnn
= lim

n→∞
(
tn
lnn
+ 1) = 0 + 1 = 1 (1%).

(d) (1%) Let an =
hn

n2
≥ 0 and bn =

lnn

n2
≥ 0. Then lim

n→∞

an
bn
= lim

n→∞

hn

lnn
= 1 > 0. Therefore, by Limit Comparison

Test, it sufficies to determine the convergence of ∑ bn.

(4%) Let f(x) =
lnx

x2
. Then on [2,∞), f(x) is positive, continuous and decreasing and moreover,

∫
t

2

lnx

x2
dx =

1 + ln 2

2
−
ln t + 1

t
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which converges to
1 + ln 2

2
as t → ∞. By Integral Test, ∑ bn converges and hence by Limit Comparison

Test, ∑an converges as well.

Alternatively, for n large enough, we have lnn ≤
√
n and hence, bn ≤

1

n1.5
. Since ∑

1

n1.5
converges, the se-

ries∑ bn converges by Direct Comparison Test and hence by Limit Comparison Test,∑an converges as well.
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