1．Consider the vector field $\mathbf{F}(x, y)=\frac{2(x-y)}{x^{2}+y^{2}} \mathbf{i}+\frac{2(x+y)}{x^{2}+y^{2}} \mathbf{j}$
（a）(4%) Evaluate，directly，$\oint_{C_{r}} \mathbf{F} \cdot d \mathbf{r}$ ，where C_{r} is the circle $x^{2}+y^{2}=r^{2}, r>0$ ，oriented counterclockwise．
（b）（6\％）Determine whether \mathbf{F} is conservative on each of the following regions．
（i）$\left\{(x, y) \in \mathbb{R}^{2}: 1<x^{2}+y^{2}<4\right\}$
（ii）$\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$
In the case if \mathbf{F} is conservative，find its scalar potential function．
（c）(6%) Let C be the portion of the curve

$$
\left(x^{2}-y^{3}+3 y^{2}-4\right)\left(x^{2}+y^{2}-1\right)=0
$$

that begins at $(0,2)$ ，winding the origin twice clockwise and ends at $(2,3)$（see figure below）．
Using（a）and（b），evaluate $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$ ．

Solution：

（a）（1M）Parametrize C by $\mathbf{r}(t)=\langle R \cos t, R \sin t\rangle, \quad 0 \leq t \leq 2 \pi$ ，then

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{0}^{2 \pi} \underbrace{\left\langle\frac{2(\cos t-\sin t)}{R}, \frac{2(\cos t+\sin t)}{R}\right\rangle}_{(1 \mathrm{M})} \cdot \underbrace{\langle-R \sin t, R \cos t\rangle}_{(1 \mathrm{M})}, d t \\
& =\int_{0}^{2 \pi}-2 \cos t \sin t+2 \sin ^{2} t+2 \cos ^{2} t+2 \cos t \sin t d t \\
& =\underbrace{4 \pi}_{(1 \mathrm{M})}
\end{aligned}
$$

Grading scheme for 1a．

－（1M）Correct parametrization for C
－（1M）Definition of Line integral $(\vec{F}(\vec{r}(t)))$
－（1M）Definition of Line integral $\left(\vec{r}^{\prime}(t)\right)$
－$(1 \mathrm{M})^{* * *}$ Correct answer
Remarks．
（a）At most 1M will be deducted overall if a student messed up the orientation of C（and lead to a sign error）
（b）（i）（1M）Take $R=1.5$ in（a）which is a curve inside the region for which $\oint_{C_{R}} \mathbf{F} \cdot d \mathbf{r}=4 \pi \neq 0$ ． （1M）Therefore， \mathbf{F} is not conservative on this region．
(ii) (1M) $\frac{\partial Q}{\partial x}=\frac{2\left(x^{2}+y^{2}\right)-2(x+y)(2 x)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{2 y^{2}-4 x y-2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}$

$$
\frac{\partial P}{\partial y}=\frac{-2\left(x^{2}+y^{2}\right)-2(x-y)(2 y)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{2 y^{2}-4 x y-2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}
$$

Since $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=0$ and the given region is $(1 \mathrm{M})$ simply-connected, we can conclude that \mathbf{F} is conservative on this region. To find the scalar potential, we set

$$
\left\{\begin{array} { l }
{ \frac { \partial f } { \partial x } = \frac { 2 x } { x ^ { 2 } + y ^ { 2 } } - \frac { 2 y } { x ^ { 2 } + y ^ { 2 } } } \\
{ \frac { \partial f } { \partial y } = \frac { 2 x } { x ^ { 2 } + y ^ { 2 } } + \frac { 2 y } { x ^ { 2 } + y ^ { 2 } } }
\end{array} \Longrightarrow \left\{\begin{array}{l}
f=\ln \left(x^{2}+y^{2}\right)-2 \tan ^{-1} \frac{x}{y}+A(y) \\
f=-2 \tan ^{-1} \frac{x}{y}+\ln \left(x^{2}+y^{2}\right)+B(x)
\end{array}\right.\right.
$$

So we can take (2M) $f(x, y)=-2 \tan ^{-1} \frac{x}{y}+\ln \left(x^{2}+y^{2}\right)+C$

Grading scheme for 1 b .

- (1M) Correct argument for (i)
- (1M) Correct conclusion for (i)
- (1M) Calculating, explicitly, either Q_{x} or P_{y} for (ii)
- (1M) Mentioning D is 'simply-connected' for (ii)
- (2 M) Correct potential function (can omit ' + C')

Remarks.

(a) At most 1 M will be deducted overall if a student messed up the orientation of C (and lead to a sign error)
(c) Claim. Any anti-clockwisely oriented simple closed curve \mathbf{C} that encloses origin satisfies

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=4 \pi
$$

Proof. (3\%) Let C^{\prime} be a circle small enough to be fitted inside the curve.(anti-clockwise oriented) and D be the region bounded by C and C^{\prime}.

As \mathbf{F} is C^{1} on D, Generalized Green's Theorem implies that

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}-\oint_{C^{\prime}} \mathbf{F} \cdot d \mathbf{r}=\iint_{D} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d A=0 \Longrightarrow \oint_{C} \mathbf{F} \cdot d \mathbf{r}=\oint_{C^{\prime}} \mathbf{F} \cdot d \mathbf{r}=4 \pi
$$

(1%) Decompose C into two clockwise oriented closed curves C_{1}, C_{2}, a segment C_{3} start from (0,2) to (2,3).

- By Claim $\oint_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=\oint_{C_{2}} \mathbf{F} \cdot d \mathbf{r}=-4 \pi$
- (1\%) By FTC, $\int_{C_{3}} \mathbf{F} \cdot d \mathbf{r}=f(2,3)-f(0,2)=\ln 13-2 \tan ^{-1} \frac{2}{3}-\ln 4=\ln \frac{13}{4}-2 \tan ^{-1} \frac{2}{3}$

So $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\oint_{C_{1}} \mathbf{F} \cdot d \mathbf{r}+\oint_{C_{2}} \mathbf{F} \cdot d \mathbf{r}+\int_{C_{3}} \mathbf{F} \cdot d \mathbf{r}=\underbrace{\ln \frac{13}{4}-2 \tan ^{-1} \frac{2}{3}-8 \pi}$ (1M)

Grading scheme for 1c.

- (3M) Correct and complete argument to prove the 'claim' via Generalized Green's Theorem
- (1M) Decomposing the given non-simple curve into three simple pieces.
- (1M) For using FTC to calculate the line integral along C_{3}.
- (1M) Overall correct answer.

2. Suppose that $f(x, y)$ is a scalar function that has continuous second order partial derivatives for $(x, y) \in \mathbb{R}^{2}$.

For $r>0$, let C_{r} be the circle $x^{2}+y^{2}=r^{2}$ parametrized by $\mathbf{r}(t)=\langle r \cos (t), r \sin (t)\rangle, 0 \leq t \leq 2 \pi$.
(a) (4%) Let $A(r)=\frac{1}{2 \pi r} \oint_{C_{r}} f(x, y) \mathrm{d} s$ be the 'average value' of f on the circle C_{r}. By the parametrization $\mathbf{r}(t)$, write $A(r)$ as a definite integral with respect to t. Hence, find a function $g(r, t)$ such that

$$
A(r)=\int_{0}^{2 \pi} g(r, t) \mathrm{d} t
$$

(b) (5\%) Find the functions $P(x, y)$ and $Q(x, y)$ such that

$$
\frac{\mathrm{d}}{\mathrm{~d} r} A(r)=\frac{1}{r} \oint_{C_{r}} P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y
$$

Express your answers in terms of the first order partial derivatives of $f(x, y)$.
(Hint. You may use, without proof, the fact that $\frac{\mathrm{d}}{\mathrm{d} r} A(r)=\int_{0}^{2 \pi} \frac{\partial}{\partial r} g(r, t) \mathrm{d} t$.)
(c) (2\%) Use (b) and Green's Theorem to find a function $R(x, y)$ such that

$$
\frac{\mathrm{d}}{\mathrm{~d} r} A(r)=\frac{1}{r} \iint_{D_{r}} R(x, y) \mathrm{d} A
$$

where D_{r} is the disc $x^{2}+y^{2} \leq r^{2}$. Express your answer in terms of the second order partial derivatives of f.
(d) (2%) We can show that $\lim _{r \rightarrow 0^{+}} A(r)=f(0,0)$. Suppose that $f_{x x}+f_{y y}=1$ and $f(0,0)=0$. Find $A(r)$.

Solution:

(a) Note that $\mathbf{r}^{\prime}(t)=(-r \sin t, r \cos t)$ and $\left|\mathbf{r}^{\prime}(t)\right|=r$. Thus

$$
A(r)=\frac{1}{2 \pi r} \int_{0}^{2 \pi} f(r \cos t, r \sin t)\left|\mathbf{r}^{\prime}(t)\right| \mathrm{d} t=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(r \cos t, r \sin t) \mathrm{d} t \quad(3 \text { points })
$$

Suppose that $A(r)=\int_{0}^{2 \pi} g(r, t) \mathrm{d} t$. Then $\frac{1}{2 \pi} \int_{0}^{2 \pi} f(r \cos t, r \sin t) \mathrm{d} t=\int_{0}^{2 \pi} g(r, t) \mathrm{d} t$.
Hence $g(r, t)=\frac{1}{2 \pi} f(r \cos t, r \sin t) \quad(1$ point)
(b)

$$
\begin{aligned}
\frac{d}{d r} A(r) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{d}{d r}(f(r \cos t, r \sin t)) \mathrm{d} t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} f_{x}(r \cos t, r \sin t) \cos t+f_{y}(r \cos t, r \sin t) \sin t \mathrm{~d} t . \quad \text { (2 points) }
\end{aligned}
$$

Suppose that $\frac{d}{d r} A(r)=\frac{1}{r} \int_{C_{r}} P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y$.

$$
\text { Then } \begin{aligned}
\frac{d}{d r} A(r) & =\frac{1}{r} \int_{0}^{2 \pi} P(r \cos t, r \sin t)(-r \sin t)+Q(r \cos t, r \sin t) r \cos t \mathrm{~d} t \\
& =\int_{0}^{2 \pi}-P(r \cos t, r \sin t) \sin t+Q(r \cos t, r \sin t) \cos t \mathrm{~d} t \quad(2 \text { points) } \\
\because & \frac{1}{2 \pi} \int_{0}^{2 \pi} f_{x}(r \cos t, r \sin t) \cos t+f_{y}(r \cos t, r \sin t) \sin t \mathrm{~d} t \\
& =\int_{0}^{2 \pi}-P(r \cos t, r \sin t) \sin t+Q(r \cos t, r \sin t) \cos t \mathrm{~d} t \\
\therefore P & =-\frac{1}{2 \pi} f_{y}, Q=\frac{1}{2 \pi} f_{x} \quad(1 \text { point })
\end{aligned}
$$

(c) $\frac{d}{d r} A(r)=\frac{1}{r} \oint_{C_{r}} P \mathrm{~d} x+Q \mathrm{~d} y=\frac{1}{r} \iint_{D_{r}} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} \mathrm{~d} A=\frac{1}{r} \iint_{D_{r}} \frac{1}{2 \pi}\left(f_{x x}+f_{y y}\right) \mathrm{d} A \quad$ (1 point)

Hence $R(x, y)=\frac{1}{2 \pi}\left(f_{x x}+f_{y y}\right) \quad$ (1 point)
(d) Because $f_{x x}+f_{y y}=1$,

$$
\frac{d}{d r} A(r)=\frac{1}{r} \iint_{D_{r}} \frac{1}{2 \pi}\left(f_{x x}+f_{y y}\right) \mathrm{d} A=\frac{1}{r} \iint_{D_{r}} \frac{1}{2 \pi} \mathrm{~d} A=\frac{r}{2} .1 \text { point }
$$

Thus $A(r)=\frac{r^{2}}{4}+c . \because \lim _{r \rightarrow 0^{+}} A(r)=0 \therefore c=0$ and $A(r)=\frac{r^{2}}{4} . \quad(1$ point)
3. In the figure below,

- S_{1} is part of the plane $z=x+1$ satisfying $2 x^{2}+y^{2}-z^{2} \leq 2$;
- S is part of the surface $2 x^{2}+y^{2}-z^{2}=2$ between the planes $z=x+1$ and $z=5$.

Both surfaces are endowed with downward orientation. Consider the vector field

$$
\mathbf{F}(x, y, z)=\left(e^{x}-z\right) \mathbf{i}+\left(e^{y}+x\right) \mathbf{j}+e^{z} \mathbf{k} .
$$

(a) (8%) Parametrize S_{1} and thus compute $\iint_{S_{1}} \operatorname{curl}(\mathbf{F}) \cdot \mathrm{d} \mathbf{S}$.
(b) (6%) Evaluate $\iint_{S \cup S_{1}} \operatorname{curl}(\mathbf{F}) \cdot \mathrm{d} \mathbf{S}$.

Solution:

(a) Find the intersection of $z=x+1$ and $2 x^{2}+y^{2}-z^{2}=2 . \Rightarrow 2 x^{2}+y^{2}-(x+1)^{2}=2 \Rightarrow(x-1)^{2}+y^{2}=4$.

Hence the projection of S_{1} onto the $x y$-plane is $D=\left\{(x, y) \mid(x-1)^{2}+y^{2} \leq 4\right\}$.

Solution 1:

One parametrization of S_{1} is $\mathbf{r}(x, y)=(x, y, x+1),(x, y) \in D$. (1 point for $\mathbf{r}(x, y) .2$ points for D.) $\mathbf{r}_{x} \times \mathbf{r}_{y}=(-1,0,1)$ which is upward and is in the opposite direction of the normal vector. (1 point)
Moreover, $\operatorname{curl}(\mathbf{F})=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ e^{x}-z & e^{y}+x & e^{z}\end{array}\right|=(0,-1,1) \quad$ (2 points).

$$
\text { Hence } \begin{aligned}
\iint_{S_{1}} \operatorname{curl}(\mathbf{F}) \cdot \mathrm{d} \mathbf{S} & =\iint_{D}(0,-1,1) \cdot\left(-\mathbf{r}_{x} \times \mathbf{r}_{y}\right) \mathrm{d} x \mathrm{~d} y \text { (1 point) } \\
& =\iint_{D}-1 \mathrm{~d} A=-A(D)=-4 \pi \quad \text { (1 point) }
\end{aligned}
$$

Solution 2:

Another parametrization of S_{1} is $\mathbf{r}(r, \theta)=(1+r \cos \theta, r \sin \theta, 2+r \cos \theta), 0 \leq r \leq 2,0 \leq \theta \leq 2 \pi$.
(2 points for $\mathbf{r}(r, \theta), 1$ point for ranges of r and θ)
$\mathbf{r}_{r} \times \mathbf{r}_{\theta}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \cos \theta & \sin \theta & \cos \theta \\ -r \sin \theta & r \cos \theta & -r \sin \theta\end{array}\right|=(-r, 0, r)$ which is upward and is in the opposite direction of the normal vector. (1 point). $\operatorname{curl}(\mathbf{F})=(0,-1,1)(2$ points $)$

$$
\text { Hence } \begin{aligned}
\iint_{S_{1}} \operatorname{curl}(\mathbf{F}) \cdot \mathrm{d} \mathbf{S} & =\int_{0}^{2 \pi} \int_{0}^{2}(0,-1,1) \cdot\left(-\mathbf{r}_{r} \times \mathbf{r}_{\theta}\right) \mathrm{d} r \mathrm{~d} \theta \quad \text { (1 point) } \\
& =\int_{0}^{2 \pi} \int_{0}^{2}-r \mathrm{~d} r \mathrm{~d} \theta=-4 \pi \quad \text { (1 point) }
\end{aligned}
$$

Solution 3:

By Stokes' Theorem, we know that $\iint_{S_{1}} \operatorname{curl}(\mathbf{F}) \cdot \mathrm{d} \mathbf{S}=\int_{\partial \mathrm{S}_{1}} \mathbf{F} \cdot \mathrm{dr}$. (1 point)
$\because S_{1}$ has downward orientation $\therefore \partial S_{1}$ is oriented clockwise.

Parametrize ∂S_{1} by

$$
\begin{aligned}
& \mathbf{r}(t)=(1+2 \cos t,-2 \sin t, 2+2 \cos t), 0 \leq t \leq 2 \pi . \text { (1 point). } \\
& \int_{\partial S_{1}} \mathbf{F} \cdot \mathbf{d r}=\int_{0}^{2 \pi} \mathbf{F}(\mathbf{r}(\mathrm{t})) \cdot \mathbf{r}^{\prime}(\mathrm{t}) \mathrm{dt} \quad(1 \text { point }) \\
& =\int_{0}^{2 \pi}-2 e^{1+2 \cos t} \sin t+4 \sin t+4 \sin t \cos t-2 e^{-2 \sin t} \cos t-2 \cos t-4 \cos ^{2} t-2 e^{2+2 \cos t} \sin t d t \\
& =-4 \pi . \quad(2 \text { points })
\end{aligned}
$$

(Computing $\iint_{S_{1}} \operatorname{curl}(\mathbf{F}) \cdot \mathrm{d} \mathbf{S}$ by Stokes' Theorem can get at most 5 points because it doesn't provide a parametrization of S_{1}.)
(b) Solution 1: Let S_{2} be the part of the plane $z=5$ satisfying $2 x^{2}+y^{2} \leq 27$ with downward orientation. Then $S \cup S_{1}$ and S_{2} have the same oriented boundary curve. Hence by Stokes' Theorem,

$$
\iint_{S \cup S_{1}} \operatorname{curl}(\mathbf{F}) \cdot \mathrm{d} \mathbf{S}=\iint_{\mathrm{S}_{2}} \operatorname{curl}(\mathbf{F}) \cdot \mathrm{d} \mathbf{S} \quad(2 \text { points })
$$

Because the unit normal vector of S_{2} is $(0,0,-1)$,

$$
\begin{aligned}
\iint_{S_{2}} \operatorname{curl}(\mathbf{F}) \cdot \mathrm{d} \mathbf{S} & =\iint_{S_{2}} \operatorname{curl}(\mathbf{F}) \cdot(0,0,-1) \mathrm{dS}=\iint_{\mathrm{S}_{2}}-1 \mathrm{dS} \quad(2 \text { points }) \\
& =-A\left(S_{2}\right)
\end{aligned}
$$

Since S_{2} is an ellipse, the area of S_{2} is $\pi \cdot \sqrt{27} \cdot \sqrt{\frac{27}{2}}=\frac{27 \pi}{\sqrt{2}}$.
Hence $\iint_{S \cup S_{1}} \operatorname{curl}(\mathbf{F}) \cdot \mathrm{d} \mathbf{S}=\iint_{\mathrm{S}_{2}} \operatorname{curl}(\mathbf{F}) \cdot \mathrm{d} \mathbf{S}=-\mathrm{A}\left(\mathrm{S}_{2}\right)=-\frac{27 \pi}{\sqrt{2}} \quad$ (2 points)
Solution 2: $\partial\left(S \cup S_{1}\right)$ is the curve C with parametrization $\mathbf{r}(t)=\left(3 \sqrt{\frac{3}{2}} \cos t,-3 \sqrt{3} \sin t, 5\right), 0 \leq t \leq 2 \pi$. (2 points).
By Stokes' Theorem,

$$
\begin{aligned}
& \iint_{S \cup S_{1}} \operatorname{curl}(\mathbf{F}) \cdot \mathrm{d} \mathbf{S}=\int_{\mathrm{C}} \mathbf{F} \cdot \mathbf{d r} \text { (1 point) } \\
& =\int_{0}^{2 \pi} \mathbf{F}(\mathbf{r}(\mathbf{t})) \cdot \mathbf{r}^{\prime}(\mathbf{t}) \mathbf{d t} \\
& =\int_{0}^{2 \pi}-\left(e^{3 \sqrt{\frac{3}{2}} \cos t}-5\right) 3 \sqrt{\frac{3}{2}} \sin t-\left(e^{-3 \sqrt{3} \sin t}+3 \sqrt{\frac{3}{2}} \cos t\right) 3 \sqrt{3} \cos t d t \quad \text { (1 point) } \\
& =-\frac{27}{\sqrt{2}} \pi(2 \text { points })
\end{aligned}
$$

4. Let $f(x, y, z)$ be a scalar field and $\mathbf{G}(x, y, z)$ be a vector field, both smooth (that is, partial derivatives exist in any order). Let D be a solid region in \mathbb{R}^{3} with boundary surface ∂D oriented outward.
(a) (4%) Prove that $\operatorname{div}(f \mathbf{G})=\nabla f \cdot \mathbf{G}+f \operatorname{div}(\mathbf{G})$.
(b) (2\%) Prove that $\iiint_{D} \nabla f \cdot \mathbf{G} \mathrm{~d} V=\iint_{\partial D} f \mathbf{G} \cdot \mathrm{~d} \mathbf{S}-\iiint_{D} f \operatorname{div}(\mathbf{G}) \mathrm{d} V$.
(c) (5%) Let $f(x, y, z)=4-x^{2}-y^{2}-z^{2}$ and $\mathbf{G}(x, y, z)=\sin (y+1) \mathbf{i}+e^{x+1} \mathbf{j}+z^{3} \mathbf{k}$. Use (b) to evaluate

$$
\iiint_{D} \nabla f \cdot \mathbf{G} \mathrm{~d} V \text { where } D=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2} \leq 4\right\}
$$

Solution:

(a) Let $\mathbf{G}=\langle P, Q, R\rangle$. Then $f \mathbf{G}=\langle f P, f Q, f R\rangle$.

$$
\begin{align*}
\operatorname{div}(f \mathbf{G}) & =(f P)_{x}+(f Q)_{y}+(f R)_{z} \quad(1 M) \\
& =\left(f_{x} P+f P_{x}\right)+\left(f_{y} Q+f Q_{y}\right)+\left(f_{z} R+f R_{z}\right) \tag{1M}\\
& =\left(f_{x} P+f_{y} Q+f_{z} R\right)+f\left(P_{x}+Q_{y}+R_{z}\right) \tag{1M}\\
& =\nabla f \cdot \mathbf{G}+f \operatorname{div}(\mathbf{G})
\end{align*}
$$

$(1 \mathrm{M})$ for overall coherence of the proof.

Grading scheme for 4a.

- (1M) Correct definition for divergence.
- (1M) Using product rule for partial derivatives.
- (1M) Grouping the terms appropriately.
- (1M) For overall coherence of the proof.
(b)

$$
\begin{align*}
\text { LHS }=\iiint_{D} \nabla f \cdot \mathbf{G} d V & \stackrel{(\mathrm{a})}{=} \iiint_{D} \operatorname{div}(f \mathbf{G})-f \operatorname{div}(\mathbf{G}) d V \tag{1M}\\
& =\iiint_{D} \operatorname{div}(f \mathbf{G}) d V-\iiint_{D} f \operatorname{div}(\mathbf{G}) d V \\
& \stackrel{\text { Div. Thm }}{=} \iint_{\partial D} f \mathbf{G} \cdot d \mathbf{S}-\iiint_{D} f \operatorname{div}(\mathbf{G}) d V=\text { RHS. }
\end{align*}
$$

Grading scheme for 4b.

- (1M) Integrate term by term in (a).
- (1M) Indicate clearly which term to apply divergence theorem on and lead to the conclusion.
(c) By using (b), we have

$$
\iiint_{D} \nabla f \cdot \mathbf{G} \mathrm{~d} V=\iint_{\partial D} f \mathbf{G} \cdot \mathrm{~d} \mathbf{S}-\iiint_{D} f \operatorname{div}(\mathbf{G}) \mathrm{d} V
$$

(1M) Since ∂D is the sphere $x^{2}+y^{2}+z^{2}=4$, we have $\iint_{\partial D} f \mathbf{G} \cdot \mathrm{~d} \mathbf{S}=0$.
(1M) On the other hand, as $f \cdot \operatorname{div} \mathbf{G}=\left(4-x^{2}-y^{2}-z^{2}\right)\left(3 z^{2}\right)$,

$$
\begin{aligned}
(3 \mathrm{M}) \iiint_{D} f \cdot \operatorname{div}(\mathbf{G}) \mathrm{d} V & =\iiint_{D}\left(4-x^{2}-y^{2}-z^{2}\right)\left(3 z^{2}\right) \mathrm{d} V \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{2}\left(4-\rho^{2}\right)\left(3 \rho^{2} \cos ^{2} \phi\right) \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =2 \pi \int_{0}^{2}\left(4 \rho^{4}-\rho^{6}\right) d \rho \int_{0}^{\pi} 3 \cos ^{2} \phi \sin \phi d \phi \\
& =2 \pi\left(\frac{128}{5}-\frac{128}{7}\right) \cdot 2
\end{aligned}
$$

Therefore, $\iiint_{D} \nabla f \cdot \mathbf{G} \mathrm{~d} V=-4 \pi\left(\frac{128}{5}-\frac{128}{7}\right)$.

Grading scheme for 4c.

- (1M) Writing $\iint_{\partial D} f \mathbf{G} \cdot \mathrm{~d} \mathbf{S}=0$
- (1M) Computing $f \cdot \operatorname{div}(\mathbf{G})$ correctly
- (3M) For correct evaluation of $\iiint_{D} f \cdot \operatorname{div}(\mathbf{G}) \mathrm{d} V$ (partial credits are available)

5．In this question，you may use，without proof，the fact that $\left\{\left(1+\frac{1}{n}\right)^{n}\right\}_{n=1}^{\infty}$ is an increasing sequence．
（a）(10%) Determine whether the series

$$
\sum_{n=1}^{\infty}(-1)^{n} \cdot\left(1-n \ln \left(1+\frac{1}{n}\right)\right)
$$

is conditionally convergent，absolutely convergent，or divergent．
（b）(5%) Find the interval of convergence of $\sum_{n=1}^{\infty} \frac{n!}{n^{n}} \cdot x^{n}$ ．

Solution：

（a）Let $a_{n}=1-n \ln \left(1+\frac{1}{n}\right)=\ln e-\ln \left(1+\frac{1}{n}\right)^{n}=\ln \left[\frac{e}{\left(1+\frac{1}{n}\right)^{n}}\right]$
Since $\left\{\left(1+\frac{1}{n}\right)^{n}\right\}$ is increasing and converges to e ．
We know

$$
\begin{array}{ll}
\text { (1) } a_{n}>\ln 1=0 & +2 \text { 分 } \\
\text { (2) } a_{n}>a_{n+1},\left\{a_{n}\right\} \text { is decreasing. } & +2 \text { 分 } \\
\text { (3) } a_{n} \rightarrow \ln 1=0 \text { as } n \rightarrow \infty & +1 \text { 分 }
\end{array}
$$

By Alternating Series Test，$\sum(-1)^{n} a_{n}$ converges．（ +2 分）
Next．$\sum\left|(-1)^{n} a_{n}\right|=\sum a_{n}$ by（1）
Observe that when n is large，$n \ln \left(1+\frac{1}{n}\right)=n\left\{\frac{1}{n}-\frac{1}{2}\left(\frac{1}{n}\right)^{2}+\frac{1}{3}\left(\frac{1}{n}\right)^{3} \cdots\right\}$
Thus $1-n \ln \left(1+\frac{1}{n}\right)=\frac{1}{2} \frac{1}{n}-\frac{1}{3} \frac{1}{n^{2}}+\cdots$
以下或類似解法正確皆給3分，沒有寫到引用的定理，扣1分
（i）By Maclaurin or Taylor series expansion，$a_{n}-\frac{1}{2 n}-\frac{1}{3 n^{2}}+\cdots, \sum a_{n}$ diverges since $\sum \frac{1}{n^{p}}$ div．s．if $p \leq 1$ ．
（ii） $\lim _{n \rightarrow \infty} \frac{a_{n}}{\frac{1}{2 n}}=1$ ，by limit comparison test，$\sum a_{n}$ diverges since $\sum \frac{1}{n^{p}}$ div．s．if $p \leq 1$ ．
Ans．$\sum(-1)^{n} a_{n}$ conv．s．conditionally．
（b）Let $b_{n}=\frac{n!}{n^{n}}>0, \frac{b_{n+1}}{b_{n}}=(n+1) \frac{n^{n}}{(n+1)^{n+1}}=\frac{1}{\left(1+\frac{1}{n}\right)^{n}} \rightarrow \frac{1}{e}$ as $n \rightarrow \infty$
By Ratio Test，the radius of convergence is e $(+2$ 分 $)$
When $x= \pm e, \frac{\left|b_{n+1} x^{n+1}\right|}{\left|b_{n} x^{n}\right|}=\frac{e}{\left(1+\frac{1}{n}\right)^{n}}>1$
That is，$\left|b_{n+1} x^{n+1}\right|>\left|b_{n} x^{n}\right|$ ．This implies $b_{n} x^{n} \rightarrow 0$ as $n \rightarrow \infty(+1$ 分）
By nth term test for divergence the series div．s．when $x=e(+1$ 分 $)$ and $x=-e(+1$ 分）
Interval of conv．is $(-e, e)$ ．
6. Consider the function $f(x)=\int_{0}^{x} \frac{1}{\sqrt{1+t^{3}}} \mathrm{~d} t$.
(a) (3%) Write down the Maclaurin series of $f(x)$ and specify its radius of convergence. (You may express your answer in binomial coefficients $\binom{a}{k}$.)
(b) (3%) What is the value of $f^{(7)}(0)$? Express your answer as a rational number $\frac{a}{b}$ with explicit integers a, b.
(c) (4%) Evaluate $\lim _{x \rightarrow 0} \frac{f(x)-x}{\left(e^{2 x^{2}}-1\right) \sin \left(5 x^{2}\right)}$.
(d) (5%) Express $f(0.5)$ as an alternating series $\sum_{k=0}^{\infty}(-1)^{k} b_{k}$ for some $b_{k} \geq 0$. Prove that $\left\{b_{k}\right\}_{k=0}^{\infty}$ is a decreasing sequence and find $\lim _{k \rightarrow \infty} b_{k}$.
(e) (2%) Hence, determine how many terms of the series in (d) are needed in order to estimate $f(0.5)$ up to an error of 10^{-4}. Justify your estimation.

Solution:

(a)

$$
f(x)=\int_{0}^{x}\left(1+t^{3}\right)^{-\frac{1}{2}} d t=\int_{0}^{x} \sum_{k=0}^{\infty} \underbrace{\binom{-\frac{1}{2}}{k} \cdot t^{3 k}}_{(1 \mathrm{M})} d t=\underbrace{\sum_{k=0}^{\infty}\binom{-\frac{1}{2}}{k} \cdot \frac{x^{3 k+1}}{3 k+1}}_{(1 \mathrm{M})} .
$$

(1M) The radius of convergence is 1 (as an integral of a binomial series).
Grading scheme for 6a.

- (1M) Correct use of Binomial series
- (1M) Integrate correctly term-by-term
- $(1 \mathrm{M})$ Correct radius of convergence
(b) By Taylor's Theorem, $\underbrace{\frac{f^{(7)}(0)}{7!}}_{(1 \mathrm{M})}=\underbrace{\binom{-\frac{1}{2}}{2} \cdot \frac{1}{7}}_{(1 \mathrm{M})}$ so $f^{(7)}(0)=270(1 \mathrm{M})$.

Grading scheme for 6b.

- (1M) Correct statement of Taylor's Theorem
- (1M) Correct coefficient of x^{7} from (a)
- (1M) Correct answer (as an explicit rational number)
(c) By writing down the leading term of both the numerator and denominator,

$$
\lim _{x \rightarrow 0} \frac{f(x)-x}{(e^{\left.2 x^{2}-1\right) \sin \left(5 x^{2}\right)}=\underbrace{\lim _{x \rightarrow 0} \frac{-\frac{x^{4}}{8}+\cdots}{\left(2 x^{2}+\cdots\right)\left(5 x^{2}+\cdots\right)}}_{(1+1+1 \mathrm{M})}=\underbrace{-\frac{1}{80}}_{(1 \mathrm{M})} .\} \text {. }}
$$

Grading scheme for 6c.

- (1 M each $\times 3$) Correct first non-zero term of the Maclaurin series for each factor
- (1M) Correct answer
(d) Note that

$$
\begin{align*}
\int_{0}^{0.5} f(x) \mathrm{d} x & =\sum_{k=0}^{\infty}\binom{-\frac{1}{2}}{k} \frac{0.5^{3 k+1}}{3 k+1} \\
& =\sum_{k=0}^{\infty} \frac{-\frac{1}{2}\left(-\frac{1}{2}-1\right) \cdots\left(-\frac{1}{2}-k+1\right)}{k!} \cdot \frac{0.5^{3 k+1}}{3 k+1} \quad \cdots(1 \mathrm{M} \tag{1M}\\
& =\sum_{k=0}^{\infty}(-1)^{k} \cdot \underbrace{\frac{\frac{1}{2}\left(\frac{1}{2}+1\right) \cdots\left(\frac{1}{2}+k-1\right)}{k!} \cdot \frac{0.5^{3 k+1}}{3 k+1}}_{b_{k}} \cdots(1 \mathrm{M})
\end{align*}
$$

- As $\frac{b_{k+1}}{b_{k}}=\underbrace{\frac{\frac{1}{2}+k}{k+1} \cdot \frac{3 k+1}{3 k+4} \cdot(0.5)^{3}}_{(1 M)} \underbrace{<1}_{(1 M)},\left\{b_{k}\right\}$ is a decreasing seqeunce.
- (1M) As $f(0.5)$ converges, $\lim _{n \rightarrow \infty} b_{n}=0$ by divergent test.

Grading scheme for 6 d .

- (1M) for spelling out the Binomial coefficient
- (1M) for the correct b_{k}
- (1M) for the ratio b_{k+1} / b_{k}
- (1M) for mentioning $b_{k+1} / b_{k}<1$
- (1M) for writing $\lim _{n \rightarrow \infty} b_{n}=0$.
(e) By (d), $f(0.5)$ is an alternating series and fulfills the conditions for AST. Let R_{k} be error incurred by estimating with the k-th partial sum. Then

$$
\underbrace{R_{k} \leq\left|a_{k+1}\right|}_{1 M}=\underbrace{\left|\binom{-\frac{1}{2}}{k+1}\right| \frac{0.5^{3 k+4}}{3 k+4}}_{1 M}
$$

For this to be less than 10^{-4}, we can take, for example, $k=3$.
Grading scheme for 6 e .

- (1M) for writing $R_{k} \leq a_{k+1}$ (or b_{k+1})
- (1M) for writing out explicitly the term a_{k+1} or b_{k+1}

Remark : without any valid justification, the choice of k itself doesn't worth any marks.
7. Let $h_{n}=\sum_{k=1}^{n} \frac{1}{k}$. Consider the sequence $\left\{t_{n}\right\}_{n=1}^{\infty}$ defined by $t_{n}=h_{n}-\ln (n)=1+\frac{1}{2}+\cdots+\frac{1}{n}-\ln n$.
(a) (4\%) By considering the graph $y=\frac{1}{x}$, interpret t_{n} as an area and deduce that $\gamma=\lim _{n \rightarrow \infty} t_{n}$ exists.
(b) (4%) Let $s_{n}=\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k}$. By expressing $s_{2 n}$ in terms of h_{n} and canceling out γ, find the value of $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$.
(c) (1%) Find $\lim _{n \rightarrow \infty} \frac{h_{n}}{\ln (n)}$.
(d) 5% Hence, determine whether the series $\sum_{n=1}^{\infty} \frac{h_{n}}{n^{2}}$ converges or not.

Solution:

(a) 2% : Prove that $t_{n} \geq 0$. Consider the upper Riemann sum:

The sum of the areas of the rectangles is $h_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}$. This is larger than the area under curve $\int_{1}^{n+1} \frac{1}{x} d x=\ln (n+1)$. Consequently, $t_{n}=h_{n}-\ln (n) \geq \ln (n+1)-\ln (n) \geq 0$.
2% : Prove that $\left\{t_{n}\right\}$ is decreasing. Note that

$$
t_{n+1}-t_{n}=\frac{1}{n+1}-\ln (n+1)+\ln (n)=\frac{1}{n+1}-\int_{n}^{n+1} \frac{1}{x} d x
$$

which is ≤ 0 because it represents the difference of the area of a 'lower' rectangle and the area under curve on $[n, n+1]$:

Hence, by monotone convergence theorem, $\lim _{n \rightarrow \infty} t_{n}$ exists.
(b) Since $s_{2 n}=1-\frac{1}{2}+\cdots+\frac{1}{2 n-1}-\frac{1}{2 n}=\left(1+\frac{1}{2}+\cdots+\frac{1}{2 n-1}+\frac{1}{2 n}\right)-\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)=h_{2 n}-h_{n}(2 \%)$, we have $s_{2 n}=t_{2 n}+\ln (2 n)-t_{n}-\ln (n)=t_{2 n}-t_{n}+\ln 2$ and hence

$$
\lim _{n \rightarrow \infty} s_{2 n}=\gamma-\gamma+\ln 2=\ln 2 .(2 \%)
$$

Consequently, as the alternative harmonic series converges, we have $\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} s_{2 n}=\ln 2$.
(c) $\lim _{n \rightarrow \infty} \frac{h_{n}}{\ln n}=\lim _{n \rightarrow \infty}\left(\frac{t_{n}}{\ln n}+1\right)=0+1=1(1 \%)$.
(d) (1\%) Let $a_{n}=\frac{h_{n}}{n^{2}} \geq 0$ and $b_{n}=\frac{\ln n}{n^{2}} \geq 0$. Then $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{h_{n}}{\ln n}=1>0$. Therefore, by Limit Comparison Test, it sufficies to determine the convergence of $\sum b_{n}$.
(4%) Let $f(x)=\frac{\ln x}{x^{2}}$. Then on $[2, \infty), f(x)$ is positive, continuous and decreasing and moreover,

$$
\int_{2}^{t} \frac{\ln x}{x^{2}} d x=\frac{1+\ln 2}{2}-\frac{\ln t+1}{t}
$$

which converges to $\frac{1+\ln 2}{2}$ as $t \rightarrow \infty$. By Integral Test, $\sum b_{n}$ converges and hence by Limit Comparison Test, $\sum a_{n}$ converges as well.

Alternatively, for n large enough, we have $\ln n \leq \sqrt{n}$ and hence, $b_{n} \leq \frac{1}{n^{1.5}}$. Since $\sum \frac{1}{n^{1.5}}$ converges, the series $\sum b_{n}$ converges by Direct Comparison Test and hence by Limit Comparison Test, $\sum a_{n}$ converges as well.

