1．Consider the function $f(x, y)=\left\{\begin{array}{ll}\frac{x^{5} y}{x^{6}+y^{4}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{array}\right.$ ．
（a）(5%) Let $\mathbf{u}=\langle a, b\rangle$ be a unit vector．Use the definition of directional derivative to find $D_{\mathbf{u}} f(0,0)$ ．
（b）(2%) Write down the linearization $L(x, y)$ of $f(x, y)$ at $(0,0)$ ．
（c）(6%) Prove that $f(x, y)$ is not differentiable at $(0,0)$ by showing that the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)-L(x, y)}{\sqrt{x^{2}+y^{2}}} \text { does not exist. }
$$

（d）（5\％）Let $\mathbf{r}(t)=\left\langle t, t^{\frac{4}{3}}\right\rangle$ be a curve on \mathbb{R}^{2} ．Find，by using the definition of derivative，

$$
\left.\frac{d}{d t} f(\mathbf{r}(t))\right|_{t=0}
$$

Is it true that $\left.\frac{d}{d t} f(\mathbf{r}(t))\right|_{t=0}=\nabla f(0,0) \cdot \mathbf{r}^{\prime}(0)$ in this case？

Solution：

（a）

$$
\begin{align*}
& D_{\mathbf{u}} f(0,0)=\lim _{t \rightarrow 0} \frac{f(a t, b t)-f(0,0)}{t} \tag{+2}\\
& \quad=\lim _{t \rightarrow 0} \frac{a^{5} b t^{6}}{a^{6} t^{7}+b^{4} t^{5}}=\lim _{t \rightarrow} \frac{a^{5} b t}{a^{6} t^{2}+b^{4}} \tag{+2}
\end{align*}
$$

If $b \neq 0, D_{\mathbf{u}} f(0,0)=\lim _{t \rightarrow 0} \frac{a^{5} b t}{a^{6} t^{2}+b^{4}}=\frac{0}{b^{4}}=0$ ．
If $b=0$ ，then $f(a t, b t)=0$ for all t and $D_{\mathbf{u}} f(0,0)=\lim _{t \rightarrow 0} \frac{f(a t, b t)-f(0,0)}{t}=\lim _{t \rightarrow 0} \frac{0}{t}=0$ ．
In conclusion，$D_{\mathbf{u}} f(0,0)=0$ for any $\mathbf{u} .(+1)$
（b）From part（a），we have $f_{x}(0,0)=D_{\mathbf{i}} f(0,0)=0$ and $f_{y}(0,0)=D_{\mathbf{j}} f(0,0)=0 .(+1)$
Hence the linearization of f at $(0,0)$ is

$$
\begin{equation*}
L(x, y)=f(0,0)+f_{x}(0,0)(x-0)+f_{y}(0,0)(y-0)=0 . \tag{+1}
\end{equation*}
$$

（c）Let

$$
g(x, y)=\frac{f(x, y)-L(x, y)}{\sqrt{x^{2}+y^{2}}}=\frac{x^{5} y}{\left(x^{6}+y^{4}\right) \sqrt{x^{2}+y^{2}}} . \quad\left(+1 \text { for simplifing } \frac{f(x, y)-L(x, y)}{\sqrt{x^{2}+y^{2}}}\right)
$$

$g\left(t^{2}, t^{3}\right)=\frac{t^{13}}{\left(t^{12}+t^{12}\right) \sqrt{t^{4}+t^{6}}}=\frac{t^{13}}{2 t^{14} \sqrt{1+t^{2}}}=\frac{1}{2 t \sqrt{1+t^{2}}}$ approaches infinity as $t \rightarrow 0^{+}$which means that g approaches infinity as (x, y) approaches $(0,0)$ along the curve $x^{3}=y^{2}$ ．Hence the limit $\lim _{(x, y) \rightarrow(0,0)} g(x, y)$ does not exist．And $f(x, y)$ is NOT differentiable at $(0,0)$ ．（ +5 for finding a path along which the limit of g doesn＇t exist．）

Students may approach $(0,0)$ along other paths．For example，
$g\left(x, x^{2}\right)=\frac{x^{7}}{\left(x^{6}+x^{8}\right) \sqrt{x^{2}+x^{4}}} \rightarrow 1$ as $x \rightarrow 0^{+}$and $g\left(x, x^{2}\right) \rightarrow-1$ as $x \rightarrow 0^{-}$．
This also shows that $\lim _{(x, y) \rightarrow(0,0)} g(x, y)$ does not exist．
（d）

$$
f(\mathbf{r}(t))=f\left(t, t^{\frac{4}{3}}\right)=\frac{t^{5} t^{\frac{4}{3}}}{t^{6}+t^{\frac{16}{3}}}=\frac{t}{t^{\frac{2}{3}}+1} \quad \text { for } t \neq 0, \quad(+2)
$$

and $f(\mathbf{r}(0))=f(0,0)=0$ ．Hence，by definition

$$
\begin{equation*}
\left.\frac{d}{d t} f(\mathbf{r}(t))\right|_{t=0}=\lim _{t \rightarrow 0} \frac{f(\mathbf{r}(t))-f(\mathbf{r}(0))}{t}=\lim _{t \rightarrow 0} \frac{1}{t^{\frac{2}{3}}+1}=1 \tag{+2}
\end{equation*}
$$

However，$\nabla f(0,0)=0 \mathbf{i}+0 \mathbf{j}$ and $\mathbf{r}^{\prime}(0)=\mathbf{i}$ ．Thus

$$
\begin{equation*}
\nabla f(0,0) \cdot \mathbf{r}^{\prime}(0)=0 \neq\left.\frac{d}{d t} f(\mathbf{r}(t))\right|_{t=0} \tag{+1}
\end{equation*}
$$

2. Let $F(x, y, z)=x^{2}+y^{2}+z^{2}$ and $G(x, y, z)=z^{3}-3 x y+y^{2}$. Let C be the curve of intersection of the level surfaces $F(x, y, z)=9$ and $G(x, y, z)=6$.
(a) (6%) Find a parametization of the tangent line of C at $(1,2,2)$.
(b) Near $(1,2,2)$, the curve defines $y=y(x)$ and $z=z(x)$ as differentiable functions in x.
(i) (4\%) Find $\left.\frac{d}{d x} F(x, y(x), z(x))\right|_{x=1}$ and $\left.\frac{d}{d x} G(x, y(x), z(x))\right|_{x=1}$. Express your answers in $y^{\prime}(1)$ and $z^{\prime}(1)$.
(ii) (3%) Hence, find the values of $y^{\prime}(1)$ and $z^{\prime}(1)$.
(c) (5%) It is known that a differentiable function $H(x, y, z)$, when restricted to the surface $F(x, y, z)=9$, attains its absolute maximum value at $(1,2,2)$ and $H_{y}(1,2,2)=-2$. Use linearization to estimate the value of $H(1.1,1.9,2.1)-H(1,2,2)$.

Solution:

(a) Let the tangent line of C at $(1,2,2)$ be L. Since curve C lies on the level surface $F(x, y, z)=9, L$ lies on the tangent plane of $F(x, y, z)=9$ at $(1,2,2)$. Moreover, $\nabla F(1,2,2)$ is a normal vector of the tangent plane. Thus we conclude that $\nabla F(1,2,2)$ and L are orthogonal. Similarly, L lies on the tangent plane of $G(x, y, z)=6$ and $\nabla G(1,2,2)$ and L are orthogonal. Therefore, L is parallel to

$$
\begin{gathered}
\nabla F(1,2,2) \times \nabla G(1,2,2) . \quad(+2) \\
\nabla F(1,2,2)=\left.(2 x, 2 y, 2 z)\right|_{(1,2,2)}=(2,4,4) \quad(+1) \\
\nabla G(1,2,2)=\left.\left(-3 y,-3 x+2 y, 3 z^{2}\right)\right|_{(1,2,2)}=(-6,1,12) \quad(+1)
\end{gathered}
$$

Hence L is parallel to

$$
\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & 4 & 4 \\
-6 & 1 & 12
\end{array}\right|=44 \mathbf{i}-48 \mathbf{j}+26 \mathbf{k}
$$

Hence a parametrization of the tangent line L is

$$
x(t)=1+44 t, \quad y(t)=2-48 t, \quad z(t)=2+26 t . \quad t \in \mathbf{R} \quad(+1)
$$

(b) (i) Near (1,2,2), the curve C can be described as $(x, y(x), z(x))$. Hence $y(1)=2, z(1)=1$.

$$
\begin{align*}
\left.\frac{d}{d x} F(x, y(x), z(x))\right|_{x=1}= & F_{x}(1,2,2) \cdot 1+F_{y}(1,2,2) \cdot y^{\prime}(1)+F_{z}(1,2,2) \cdot z^{\prime}(1) \quad(+1) \\
& =2+4 y^{\prime}(1)+4 z^{\prime}(1) \quad(+1) \\
\left.\frac{d}{d x} G(x, y(x), z(x))\right|_{x=1}= & G_{x}(1,2,2) \cdot 1+G_{y}(1,2,2) \cdot y^{\prime}(1)+G_{z}(1,2,2) \cdot z^{\prime}(1) \quad(+1) \\
& =-6+y^{\prime}(1)+12 z^{\prime}(1) \tag{+1}
\end{align*}
$$

(ii) Since the curve $C:(x, y(x), z(x))$ lies on the level surfaces $F(x, y, z)=9$ and $G(x, y, z)=6$, we have $F(x, y(x), z(x))=9$ and $G(x, y(x), z(x))=6$. Hence

$$
\begin{cases}\left.\frac{d}{d x} F(x, y(x), z(x))\right|_{x=1}=0=2+4 y^{\prime}(1)+4 z^{\prime}(1) \tag{+1}\\ \left.\frac{d}{d x} G(x, y(x), z(x))\right|_{x=1}=0=-6+y^{\prime}(1)+12 z^{\prime}(1)\end{cases}
$$

Solve the above system of equations, we get

$$
\begin{equation*}
y^{\prime}(1)=-\frac{12}{11} \quad(+1), \quad z^{\prime}(1)=\frac{13}{22} \tag{+1}
\end{equation*}
$$

(c) Since under the constraint $F(x, y, z)=9, H(x, y, z)$ obtains absolute maximum at $(1,2,2)$ and $\nabla F(1,2,2) \neq$ $\mathbf{0}$, from the method of Lagrange multipliers we know that

$$
\nabla H(1,2,2)=\lambda \nabla F(1,2,2)=\lambda(2,4,4)
$$

Given that $H_{y}(1,2,2)=-2$, we conclude that $\lambda=-\frac{1}{2}$ and $\nabla H(1,2,2)=(-1,-2,-2)$. $\quad(+1)$ By the linearization of H at $(1,2,2)$, we can estimate

$$
\begin{gather*}
H(1.1,1.9,2.1)-H(1,2,2) \approx H_{x}(1,2,2) \cdot(1.1-1)+H_{y}(1,2,2) \cdot(1.9-2)+H_{z}(1,2,2) \cdot(2.1-2) \tag{+1}\\
=(-1) \cdot(0.1)+(-2) \cdot(-0.1)+(-2) \cdot(0.1)=-0.1 .
\end{gather*}
$$

3．(14%) It is known that the plane $x+y-2 z=5$ and the cylinder $3 x^{2}+2 x y+3 y^{2}=16$ intersect at an ellipse Γ centered at $\left(0,0,-\frac{5}{2}\right)$ ．Apply the method of Lagrange multipliers to find the maximum and minimum distances of Γ from its center．

Solution：

對以下 2 種可能解答方式，請依相同原則給分。
（1）Find the max and min values of

$$
\begin{array}{ll}
f(x, y, z)=x^{2}+y^{2}+\underline{\left(z-\left(-\frac{5}{2}\right)\right)^{2}} & \text { subject to } \\
g(x, y, z)=x+y-2 z-5=0 & \text { and } \\
h(x, y, z)=3 x^{2}+2 x y+3 y^{2}-16=0
\end{array}
$$

（2）Find the max and min values of

$$
\tilde{f}(x, y, z)=x^{2}+y^{2}+\underline{z^{2}} \text { subject to }\left\{\begin{array}{l}
\tilde{g}(x, y, z)=x+y-2 \underline{z=0} \\
h(x, y, z)=3 x^{2}+2 x y+3 y^{2}-16=0
\end{array}\right.
$$

（只列出 case（1））
By the method of Langrange multipliers，we need to solve（ x, y, z, μ, λ ）satisfying

$$
\begin{cases}\nabla f=\lambda \nabla g+\mu \nabla h & \rightarrow 3 \text { 分 }(1) \\ g=0 & \rightarrow \text { 1分 }(2) \\ h=0 & \rightarrow \text { 1分 }(3)\end{cases}
$$

其中（1）為

$$
\begin{cases}2 x=\lambda \cdot 1+\mu \cdot(6 x+2 y) & \rightarrow 1 \text { 分 }(4) \\ 2 y=\lambda \cdot 1+\mu \cdot(2 x+6 y) & \rightarrow 1 \text { 分 }(5) \\ 2\left(z+\frac{5}{2}\right)=\lambda \cdot(-2)+\mu \cdot 0 & \rightarrow 1 \text { 分 }(6)\end{cases}
$$

以上全寫完整且正確，才繼續批改
大致查看，確認有意義的解 $(1),(2),(3)$ ，就跳至最後檢查答案，給分
By（3）or（6），$\lambda=-\left(z+\frac{5}{2}\right) \therefore\left\{\begin{array}{l}2 x+z+\frac{5}{2}=2 \mu(3 x+y) \\ 2 y+z+\frac{5}{2}=2 \mu(x+3 y)\end{array}\right.$
Since $(4) \cdot x+(5) \cdot y+(6) \cdot\left(z+\frac{5}{2}\right)=2\left[x^{2}+y^{2}+\left(z+\frac{5}{2}\right)^{2}\right]=2 \cdot 16 \cdot \mu, \mu$ can not be zero．$\frac{(7)}{(8)}$ gives $(x-y)\left(x+y-\left(z+\frac{5}{2}\right)\right)=0$
If $x=y,(x, y, z)=\left(\pm \sqrt{2}, \pm \sqrt{2}, \pm \sqrt{2}-\frac{5}{2}\right) 2$ 分 min distance $=\sqrt{6} 1$ 分
If $x+y-\overline{\left(z+\frac{5}{2}\right)=0,(x, y, z)=\left(\pm 2, \mp 2,-\frac{5}{2}\right) 2}$ 分 $\quad \underline{m a x ~ d i s t a n c e ~}=\sqrt{8}=2 \sqrt{2} 1$ 分
4. (a) (8\%) Evaluate $\int_{-2}^{0} \int_{-\frac{y}{2}}^{1} e^{-4\left(x^{3}+x^{2}\right)} \mathrm{d} x \mathrm{~d} y+\int_{0}^{3} \int_{\sqrt{\frac{y}{3}}}^{1} e^{-4\left(x^{3}+x^{2}\right)} \mathrm{d} x \mathrm{~d} y$.
(b) (8%) Let D be the region in the first quadrant that is bounded by $x^{2}+3 y^{2}=1, x^{2}+3 y^{2}=5, y=x$ and the x-axis. Evaluate $\iint_{D} \cos \left(x^{2}+3 y^{2}\right) \mathrm{d} A$.

Solution:

(a) Notice that the integrants of the two integrals are the same and the union D of the domains of the integrals is given by

$$
\begin{aligned}
D & =\{-2 \leq y \leq 0,-y / 2 \leq x \leq 1\} \cup\{0 \leq y \leq 3, \sqrt{y / 3} \leq x \leq 1\} \\
& =\left\{(x, y) \mid 0 \leq x \leq 1,-2 x \leq y \leq 3 x^{2}\right\}
\end{aligned}
$$

which is a type I region. We have, by Fubini's theorem,

$$
\begin{aligned}
\iint_{D} e^{-4\left(x^{3}+x^{2}\right)} \mathrm{d} A & =\int_{0}^{1} \int_{-2 x}^{3 x^{2}} e^{-4\left(x^{3}+x^{2}\right)} \mathrm{d} y \mathrm{~d} x \\
& =\int_{0}^{1}\left(3 x^{2}+2 x\right) e^{-4\left(x^{3}+x^{2}\right)} \mathrm{d} x \\
& =\left.\frac{-1}{4} e^{-4\left(x^{3}+x^{2}\right)}\right|_{0} ^{1} \\
& =\frac{1}{4}\left(1-e^{-8}\right)
\end{aligned}
$$

[Here, correctly identify the type I region $D:(+3)$, and set up the integral: $(+2)$.]
(b) Let $u=x, v=\sqrt{3} y$ and then $u=r \cos \theta, v=r \sin \theta$, which together give

$$
\begin{equation*}
x=r \cos \theta, y=\frac{1}{\sqrt{3}} r \sin \theta \tag{+3}
\end{equation*}
$$

The conditions $x^{2}+3 y^{2}=1, x^{2}+3 y^{2}=5, y=x$, and $y=0$ (the x-axis) become $r=1, r=\sqrt{5}, \theta=\pi / 3$, and $\theta=0$, respectively $(+2)$; the Jacobian is

$$
\begin{align*}
\frac{\partial(x, y)}{\partial(r, \theta)}=\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\frac{1}{\sqrt{3}} \sin \theta & \frac{1}{\sqrt{3}} r \cos \theta
\end{array}\right|=\frac{1}{\sqrt{3}} r \quad(+2) \tag{+2}\\
\begin{aligned}
\iint_{D} \cos \left(x^{2}+3 y^{2}\right) d A & =\frac{1}{\sqrt{3}} \int_{0}^{\pi / 3} \int_{1}^{\sqrt{5}} r \cos r^{2} d r d \theta \\
& =\frac{\pi}{3 \sqrt{3}}\left[\frac{1}{2} \sin r^{2}\right]_{1}^{\sqrt{5}} \quad(+1) \\
& =\frac{\pi}{6 \sqrt{3}}(\sin 5-\sin 1)
\end{aligned}
\end{align*}
$$

[Find the correct change of variables: $(+3)$. The linear transformation $u=x, v=\sqrt{3} y:(+2)$, and the polar coordinates: $(+1)$.
Find the correct region after the change of coordinates: $(+2)$. The conditions $u^{2}+v^{2}=1,5, v=\sqrt{3} u, v=0$ for $u, v:(+1)$.
Find the correct Jacobian: $(+2)$. For the linear map: $(+1)$, and the polar coordinates: $(+1)$.
Find the correct antiderivatives: $(+1)$.]
5. (a) Let U be the solid region enclosed by the surfaces $x^{2}+y^{2}+z^{2}=6$ and $z=x^{2}+y^{2}$.
(i) (5%) Express the volume of U as an iterated integral in cylindrical coordinates :

$$
\operatorname{Volume}(U)=\int_{a}^{b} \int_{c(\theta)}^{d(\theta)} \int_{e(r, \theta)}^{f(r, \theta)} g(r, \theta, z) \mathrm{d} z \mathrm{~d} r \mathrm{~d} \theta
$$

(ii) (4\%) Hence, find the volume of U.
(b) Let S be the solid that lies below the sphere $x^{2}+y^{2}+z^{2}=1$ and above the cone $z=\sqrt{3 x^{2}+3 y^{2}}$ with density function $\rho(x, y, z)=\sqrt{z}$.
(i) (5%) Express the mass of S as an iterated integral in spherical coordinates :

$$
\operatorname{Mass}(S)=\int_{a}^{b} \int_{c}^{d} \int_{e}^{f} g(\rho, \theta, \phi) \mathrm{d} \rho \mathrm{~d} \theta \mathrm{~d} \phi
$$

(ii) (4%) Hence, find the mass of S.

Solution:

(a) (i) $\int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} \int_{r^{2}}^{\sqrt{6-r^{2}}} r d z d r d \theta$

Grading scheme for Q5a i

- (4M) For the integration limits [Partial credits available]
- (1M) Jacobian of cylindrical coordinates

Remarks.
(i) -1 M overall for students swapping $\sqrt{6-r^{2}}$ with r^{2}.
(ii) -1 M for each mistake incurred in writing down the integration limits.
(ii)

$$
\begin{align*}
\text { Volume }(U) & =2 \pi \int_{0}^{\sqrt{2}} r \sqrt{6-r^{2}}-r^{3} d r \\
& =2 \pi\left[-\frac{1}{3}\left(6-r^{2}\right)^{\frac{3}{2}}-\frac{r^{4}}{4}\right]_{r=0}^{r=\sqrt{2}} \quad . . \tag{2M}\\
& =2 \pi\left(-\frac{8}{3}-1+\frac{6^{\frac{3}{2}}}{3}\right)=2 \pi\left(\frac{6^{\frac{3}{2}}-11}{3}\right) \tag{2M}
\end{align*}
$$

Grading scheme for Q5b ii

- (2M) For an antiderivative of $r \sqrt{6-r^{2}}-r^{3}$
- (2M) Correct answer

Remarks.
(i) No marks in this part for students who forget the Jacobian in (a)(i).
(b) (i) $\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{6}} \int_{0}^{1} \sqrt{\rho \cos \phi} \cdot \rho^{2} \sin \phi d \rho d \phi d \theta$

Grading scheme for Q5b i

- (3M) For the integration limits [Partial credits available]
- $(1 \mathrm{M})$ For the integrand
- (1M) Jacobian of spherical coordinates
(ii) The mass can be computed as

$$
\begin{aligned}
\left(\int_{0}^{2 \pi} 1 d \theta\right) \cdot\left(\int_{0}^{1} \rho^{\frac{5}{2}} d \rho\right) \cdot\left(\int_{0}^{\frac{\pi}{6}} \sin \phi \sqrt{\cos \phi} d \phi\right) & =2 \pi \cdot \frac{2}{7} \cdot\left[-\frac{2}{3}(\cos \phi)^{\frac{3}{2}}\right]_{0}^{\frac{\pi}{6}} \\
& =2 \pi \cdot \frac{2}{7} \cdot\left(\frac{2}{3}-\frac{2}{3}\left(\frac{\sqrt{3}}{2}\right)^{\frac{3}{2}}\right)
\end{aligned}
$$

Grading scheme for Q5b ii

- (2M) Anti-derivative of $\sin \phi \sqrt{\cos \phi}$ [Partial credits available]
- (2M) Correct answer [Partial credits available]

6. (a) (8%) Let $f(x)$ be a continuous function on \mathbb{R} and T be the triangular region on the $x y$-plane whose vertices are $(0,0),(2,0)$ and $(0,3)$. Using a suitable change of variables, show that

$$
\iint_{T} f(3 x+2 y) \mathrm{d} A=\frac{1}{6} \int_{0}^{6} u f(u) \mathrm{d} u
$$

(b) Let U be the solid that is below the plane $z=3 x+2 y$ and above the region T in (a) on the $x y$-plane. Consider

$$
I=\iiint_{U} \cos \left(\frac{z^{3}}{3}-36 z\right) \mathrm{d} V
$$

(i) (3%) Find a function f such that

$$
I=\iint_{T} f(3 x+2 y) \mathrm{d} A
$$

You may express f as an integral (Do not evaluate it !).
(ii) (5%) Hence, use (a) and then Fubini's Theorem to evaluate I.

Solution:

(a) This is a proof-based question so we expect the candidates to demonstrate every step clearly. There are many possible change of variables. One of which is the following :
(1M) Let $u=3 x+2 y$ and $v=y$.
(1M) Then $x=\frac{1}{3} u-\frac{2}{3} v$ and $y=v$.
(2M) Jacobian is $\left|\begin{array}{cc}\frac{1}{3} & -\frac{2}{3} \\ 0 & 1\end{array}\right|=\frac{1}{3}$
(2M)The given region becomes the region enclosed by $u=2 v, v=0$ and $u=6$.
As a result, we have

$$
\iint_{T} f(3 x+2 y) d A=\int_{0}^{6} \int_{0}^{\frac{1}{2} u} f(u) \cdot \frac{1}{3} d v d u=\frac{1}{6} \int_{0}^{6} u f(u) d u
$$

(2 M for the overall coherence and completeness of the argument)

Grading scheme for Q6a

- (1M) For making a reasonable substitution $u=u(x, y)$ and $v=v(x, y)$
- (1M) For solving $x=x(u, v)$ and $y=y(u, v)$
- $(2 \mathrm{M})$ For correct Jacobian
- (2M) For transforming the region correctly
- (2M) For the overall coherence and completeness of the argument
(b) (i) $I=\iint_{T} \int_{0}^{3 x+2 y} \cos \left(\frac{z^{3}}{3}-36 z\right) d z d A$ so $f(u)=\int_{0}^{u} \cos \left(\frac{z^{3}}{3}-36 z\right) d z$.

Grading scheme for Q6bi

- All or nothing. Except for obvious typos.
(ii)

$$
\begin{align*}
\iiint_{U} \cos \left(z^{3}-12 z\right) \mathrm{d} V & =\iint_{T}\left(\int_{0}^{3 x+2 y} \cos \left(\frac{z^{3}}{3}-36 z\right) d z\right) d A \\
& \stackrel{(a)}{=} \frac{1}{6} \int_{0}^{6} \int_{0}^{u} u \cos \left(\frac{z^{3}}{3}-36 z\right) d z d u \tag{1M}\\
& \stackrel{\text { Fubini }}{=} \frac{1}{6} \int_{0}^{6} \int_{z}^{6} u \cos \left(\frac{z^{3}}{3}-36 z\right) d u d z \tag{2M}\\
& =\frac{1}{12} \int_{0}^{6}\left(36-z^{2}\right) \cos \left(\frac{z^{3}}{3}-36 z\right) d z \\
& =\frac{1}{12}\left[\sin \left(36 z-\frac{z^{3}}{3}\right)\right]_{0}^{6} \\
& =\frac{\sin (144)}{12} \quad \cdots(2 \mathrm{M})
\end{align*}
$$

Grading scheme for Q6bii

- (1M) for using (a) correctly
- $(2 \mathrm{M})$ for applying Fubini correctly
- (2M) for the correct answer

