1．（ 10% ）Fill in the blanks．塤空題。
The given graph $y=f(x)$ contains 2 line segments and 1 circular arc（a quarter circle）．
底下是函數 $y=f(x)$ 的函數圖形，由兩條線段與四分之一圓弧組成。

Evaluate 計算
（a） $\int_{-2}^{2} f(x) d x=$ \qquad
（b） $\int_{2}^{4} f(x) d x=$ \qquad
（c） $\int_{-4}^{4} f(x) d x=$ \qquad
（d）Let $g(x)=\int_{-4}^{x} f(t) d t$ ．The function $g(x)$ is increasing on the interval
定義 $g(x)=\int_{-4}^{x} f(t) d t$ 。試求出函數 g 遞增的區間。 $($ \qquad ， \qquad
（e）The degree two Taylor polynomial of the function $F(x)=\sqrt{4+x}$ at $x=0$ is
函數 $F(x)=\sqrt{4+x}$ 在 $x=0$ 的二次泰勒多項式是
\qquad $+$ \qquad $x+$ \qquad x^{2}
（f）Suppose we observe that a population $P(t)$ is proportional to the square of the growth rate $\frac{d P}{d t}$ ，where t is a time variable．Express the model as a differential equation．
已知某人口模型中，＂人口函數 $P(t)$＂和＂人口成長率 $\frac{d P}{d t}$ 的平方＂成正比，底下哪個微分方程是這個模型的方程式？
（A）$\frac{d P}{d t}=k t^{2}$
（B）$\frac{d P}{d t}=k P^{2}$
（C）$\frac{d P}{d t}=k \sqrt{P}$
（D）$\frac{d P}{d t}=k \sqrt{t}$

Solution：

Grading scheme of Question 1 Answers only．No partial credits．
（a） $16-4 \pi(2 \%)$
（b）$-4(2 \%)$
（c） $12-4 \pi(1 \%)$
（d）$(-3,2)(1 \%)$
（e） $2+\frac{1}{4} x-\frac{1}{64} x^{2}(1+1+1 \%)$
（f） $\mathrm{C}(1 \%)$

2．(10%) Let $F(x)=\int_{-\sqrt{x}}^{\sqrt{x}} e^{-t^{2}} d t$ ．定義 $F(x)=\int_{-\sqrt{x}}^{\sqrt{x}} e^{-t^{2}} d t$ 。
（a）Use the Fundamental Theorem of Calculus to find $F^{\prime}(x)$ 。用微積分基本定理來計算 $F^{\prime}(x)$ 。
（b）Evaluate the limit $\lim _{x \rightarrow 0^{+}} \frac{F(x)}{\sqrt{x}}$ with l＇Hôpital＇s Rule．用羅必達法則來計算極限 $\lim _{x \rightarrow 0^{+}} \frac{F(x)}{\sqrt{x}}$

Solution：

（a）Since $e^{-t^{2}}$ is continuous on \mathbb{R} and

$$
F(x)=\int_{0}^{\sqrt{x}} e^{-t^{2}} d t-\int_{0}^{-\sqrt{x}} e^{-t^{2}} d t,(1 \%)
$$

the Fundamental Theorem of Calculus implies

$$
F^{\prime}(x)=\underbrace{e^{-(\sqrt{x})^{2}}}_{(1 \%)} \cdot \underbrace{\frac{1}{2 \sqrt{x}}}_{(1 \%)}-\underbrace{e^{-(-\sqrt{x})^{2}}}_{(1 \%)} \cdot \underbrace{\left(-\frac{1}{2 \sqrt{x}}\right)}_{(1 \%)}=\frac{e^{-x}}{\sqrt{x}}
$$

Remark．Students cannot quote the formula for

$$
\frac{d}{d x}\left(\int_{g(x)}^{h(x)} F(t) d t\right)=F(h(x)) h^{\prime}(x)-F(g(x)) g^{\prime}(x)
$$

directly unless they give its derivation（correctly）．
（b）The given limit is of $\frac{0}{0}$ form．（1\％）
By L＇Hospital＇s rule，we have

$$
\lim _{x \rightarrow 0^{+}} \frac{F(x)}{\sqrt{x}}=\underbrace{\lim _{x \rightarrow 0^{+}} \frac{F^{\prime}(x)}{\frac{1}{2 \sqrt{x}}}}_{(1 \%)}=\underbrace{\lim _{x \rightarrow 0^{+}} \frac{\frac{e^{-x}}{\sqrt{x}}}{\frac{1}{x}}}_{(1 \%)}=\underbrace{\lim _{x \rightarrow 0^{+}} \frac{e^{-x}}{2}}_{(1 \%)}=\underbrace{\frac{1}{2}}_{(1 \%)}
$$

Remark．All answers need to be fully and correctly justified．

3．(20%) Evaluate．計算題。
（a） $\int_{0}^{\pi / 4} \tan ^{3} \theta \sec ^{2} \theta d \theta$
（b） $\int_{0}^{1} \frac{1}{x^{2}+2 x+2} d x$

Solution：

（a）

$$
\int_{0}^{\pi / 4} \tan ^{3} \theta \sec ^{2} \theta d \theta=\int_{0}^{\pi / 4}(\tan \theta)^{3} d(\tan \theta)=\int_{0}^{1} u^{3} d u=\left.\frac{u^{4}}{4}\right|_{0} ^{1}=\frac{1}{4}
$$

（b）

$$
\int_{0}^{1} \frac{1}{x^{2}+2 x+2} d x=\int_{0}^{1} \frac{1}{(x+1)^{2}+1} d(x+1)=\int_{1}^{2} \frac{1}{u^{2}+1} d u=\left.\tan ^{-1} u\right|_{1} ^{2}=\tan ^{-1}(2)-\frac{\pi}{4}
$$

Grading：
There are many ways for the student to get the correct answer．Read their work，-2% for each minor mistake． -3% for any antiderivative mistake．
If the student did not arrive at the correct answer（unfinished or major mistake），they get $+3 \%$ for the first correct integration technique and $+2 \%$ for the first correct antiderivative．
If the student mis－copied the problem，determine if the new integral is of similar difficulty．Grade normally if it is，otherwise max 5% ．

4．(10%) Use the method of partial fractions to evaluate $\int \frac{x-1}{x^{2}\left(x^{2}+1\right)} d x$ ．Make sure to clearly express the rational function in its partial fraction form．
用部分分式積分法來計算 $\int \frac{x-1}{x^{2}\left(x^{2}+1\right)} d x$ 。

Solution：

Partial fractions：

$$
\frac{x-1}{x^{2}\left(x^{2}+1\right)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C x+D}{x^{2}+1}=\frac{A\left(x^{3}+x\right)+B\left(x^{2}+1\right)+C x^{3}+D x^{2}}{x^{2}\left(x^{2}+1\right)}
$$

Constant term：$B=-1$ ．
Linear term：$A=1$ ．
Other terms have zero coefficient：$C=-1, D=1$ ．
Hence

$$
\begin{gathered}
\frac{x-1}{x^{2}\left(x^{2}+1\right)}=\frac{1}{x}-\frac{1}{x^{2}}-\frac{x}{x^{2}+1}+\frac{1}{x^{2}+1} \\
\int \frac{x-1}{x^{2}\left(x^{2}+1\right)} d x=\int\left(\frac{1}{x}-\frac{1}{x^{2}}-\frac{x}{x^{2}+1}+\frac{1}{x^{2}+1}\right) d x=\ln |x|+\frac{1}{x}-\frac{1}{2} \ln \left(x^{2}+1\right)+\tan ^{-1} x+K
\end{gathered}
$$

Grading：

4% for the partial fraction form．Equivalent forms are okay．
2% for solving the constants．Any minor error is -1% ．If there are fewer than 4 constants they immediately get -1% ．
4% for the antiderivative．If 1 constant is zero due to error above，-0% ．If 2 or more constants are zero then -1% for each．Missing absolute value or missing $+K$（using $+C$ is fine）is -1% each．
If the student miss a term in the first step，then it will be -3% due to losing 1% in each part．
Other methods to solve the problem will have max 8% ，but gets -2% for each minor error and -4% for each major error．

5．(10%) Evaluate the improper integral $\int_{0}^{4} \frac{d x}{4 x+\sqrt{x}}$ ．計算瑕積分 $\int_{0}^{4} \frac{d x}{4 x+\sqrt{x}}$ 。

Solution：

Let $u=\sqrt{x}(1 \%)$ ，so $d u=\frac{1}{2 \sqrt{x}} d x$（1\％）i．e．$d x=2 u d u$（2\％）．Thus，we have

$$
\begin{aligned}
\int \frac{d x}{4 x+\sqrt{x}} & =\int \frac{2 u d u}{4 u^{2}+u}(2 \%) \\
& =\int \frac{2}{4 u+1} d u \\
& =\frac{2}{4} \ln |4 u+1|
\end{aligned}
$$

（ 2% for correct answer． 1% if see any sign of \ln ）．Finally，we have

$$
\int_{0}^{4} \frac{d x}{4 x+\sqrt{x}}=\left.\frac{2}{4} \ln |4 \sqrt{x}+1|\right|_{0} ^{4}=\frac{1}{2} \ln 9=\ln 3
$$

（WITHOUT CONSIDERING THE PREVIEWS INTEGRAL IS CORRECT OR NOT． 2% if the student reverses the process of substitute and plugin 4 and 0 to do subtraction（You don＇t need to check if the student compute the result right or wrong，as long as the student carry out the process correctly）． 1% if the student only reverse the process of substitute or only do substitution．）

6．(8%) Given $e^{x}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}$ ．Let $g(x)=\int_{0}^{x} e^{t^{2}} d t$ ．Write down the Taylor series of $g(x)$ at $x=0$ ．
定義 $g(x)=\int_{0}^{x} e^{t^{2}} d t$ 。已知 $e^{x}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}$ ，試求函數 $g(x)$ 在 $x=0$ 的泰勒級數。

Solution：

$$
\begin{aligned}
g(x) & =\int_{0}^{x} \sum_{n=0}^{\infty} \frac{1}{n!} t^{2 n} d t \\
& =\sum_{n=0}^{\infty} \frac{1}{n!} \int_{0}^{x} t^{2 n} d t \\
& =\sum_{n=0}^{\infty} \frac{1}{n!} \frac{x^{2 n+1}}{2 n+1}
\end{aligned}
$$

（ 2% if you see t has power $2 n$ before integral； 2% if you see t has power $2 n+1$ after integral． 2% if you see $\frac{1}{2 n+1}$ after integral． 2% if you see any sign that the student interchange the operation of summation and integration． -1% for any stupid mistake up to -2% ．）

7．(12%) Given $\ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{n}$ ．Let $f(x)=x^{2} \ln \left(1-x^{3}\right)$ ．
定義 $f(x)=x^{2} \ln \left(1-x^{3}\right)$ 。已知 $\ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{n}$ 。
（a）Write down the Taylor series of $f(x)$ at $x=0$ ．求函數 $f(x)$ 在 $x=0$ 的泰勒級數。
（b）Find $f^{(11)}(0)$ ．用泰勒級數來計算 $f^{(11)}(0)$ 。

Solution：

（a）$f(x)=\sum_{n=1}^{\infty} \frac{-1}{n} x^{3 n+2}$ ．（It＇s okay if you see $-1^{2 n+1}$ ． 6% for this question，and mimic the grading scheme of Question 6）．
（b）Set $11=3 n+2(2 \%)$ ．Solve $n=3(1 \%) . f^{11}(0)=\frac{-11!}{3}(3 \%)$ ．（As long as the student use his／her result in the part（a），the student gets points）

8．（ 20% ）Solve．解微分方程。
（a）$\frac{d y}{d x}=1+y^{2}$
（b）$\frac{d y}{d x}-2 x y=x e^{x^{2}} \sin (2 x) \quad$ with initial value 初始條件 $y(0)=1$ ．

Solution：

（a）By separating the variable，

$$
\underbrace{\int \frac{1}{1+y^{2}} d y}_{(1 \%)}=\underbrace{\int 1 d x}_{(1 \%)} \Rightarrow \underbrace{\tan ^{-1}(y)}_{(2 \%)}=\underbrace{x}_{(1 \%)}+\underbrace{C}_{(1 \%)}
$$

Remark．Accept any equivalent answers．
（b）An integrating factor is given by $e^{\int(-2 x) d x}=e^{-x^{2}}(2 \%)$ ．By multiplying it to the both sides，

$$
\begin{aligned}
e^{-x^{2}} \frac{d y}{d x}-2 x e^{-x^{2}} y & =x \sin (2 x) \\
\Longrightarrow\left(e^{-x^{2}} \cdot y\right)^{\prime} & =x \sin (2 x) \\
\Longrightarrow e^{-x^{2}} \cdot y & =\int x \sin (2 x) d x(3 \%) \\
& =-\frac{x \cos (2 x)}{2}+\int \frac{\cos (2 x)}{2} d x(3 \%) \\
& =-\frac{x \cos (2 x)}{2}+\frac{\sin (2 x)}{4}+C(2 \%)
\end{aligned}
$$

Hence，$y=e^{x^{2}}\left(-\frac{x \cos (2 x)}{2}+\frac{\sin (2 x)}{4}+C\right)$ ．
Finally，we are given that when $x=0, y=1,(1 \%)$

$$
1=1 \cdot(0+0+C)
$$

so $C=1(2 \%)$ ．From this we conclude that

$$
y=e^{x^{2}}\left(-\frac{x \cos (2 x)}{2}+\frac{\sin (2 x)}{4}+1\right) \cdot(1 \%)
$$

Remark．For any components that are worth $\geq 2 \%$ ，partial credits are available for any minor calculation errors．

