1．Evaluate the following integrals．
（a）$(5 \%) \int \frac{1}{x^{\frac{1}{2}}+x^{\frac{2}{3}}} \mathrm{~d} x$
（b）$(6 \%) \int \ln \left(x^{2}+1\right) \mathrm{d} x$ ．
（c）$(7 \%) \int_{2}^{3} \frac{x}{\sqrt{4 x-x^{2}}} \mathrm{~d} x$

Solution：

（a）Let $x=t^{6}$（2 points）．So $d x / d t=6 t^{5}$ ．The original integral becomes

$$
\begin{aligned}
\int \frac{1}{t^{3}+t^{4}} 6 t^{5} d t & =\int \frac{6 t^{2}}{1+t} d t \\
& =6 \int t-1+\frac{1}{1+t} d t \\
& =6\left(\frac{t^{2}}{2}-t+\ln |1+t|\right)+C \\
& =3 x^{\frac{1}{3}}-6 x^{\frac{1}{6}}+6 \ln \left|1+x^{\frac{1}{6}}\right|+C .(3 \text { points })
\end{aligned}
$$

（b）Using integration by parts，we get

$$
\begin{aligned}
\int \ln \left(x^{2}+1\right) d x & =x \ln \left(x^{2}+1\right)-\int x \frac{2 x}{x^{2}+1} d x(3 \text { points }) \\
& =x \ln \left(x^{2}+1\right)-\int 2-\frac{2}{x^{2}+1} d x \\
& =x \ln \left(x^{2}+1\right)-2 x+2 \tan ^{-1} x+C .(3 \text { points })
\end{aligned}
$$

（c）First we complete the square

$$
\int_{2}^{3} \frac{x}{\sqrt{4 x-x^{2}}} d x=\int_{2}^{3} \frac{x}{\sqrt{4-(x-2)^{2}}} d x .(2 \text { points })
$$

Then we use the substitution $x-2=2 \sin \theta$ and $d x / d \theta=2 \cos \theta$（ 2 points）．Therefore，the integral becomes

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{6}} \frac{2 \sin \theta+2}{2|\cos \theta|} 2 \cos \theta d \theta \quad \text { (because } 0 \leq \theta \leq \pi / 6, \cos \theta \text { is positive) } \\
= & \int_{0}^{\frac{\pi}{6}} 2 \sin \theta+2 d \theta \\
= & \left.2(-\cos \theta+\theta)\right|_{0} ^{\frac{\pi}{6}}=2-\sqrt{3}+\frac{\pi}{3} .(3 \text { points })
\end{aligned}
$$

2. (12%) Let R be the region enclosed by the curve $y=\frac{1}{x^{2}\left(x^{2}+2 x+2\right)}, 1 \leq x \leq 2$ and the x-axis. Find the volume of the solid obtained by rotating R about the y-axis.

Solution:

1. Set up integral (2 points in total):

By shell's method (1 point), the volume is

$$
V=\int_{1}^{2} 2 \pi x \cdot \frac{1}{x^{2}\left(x^{2}+2 x+2\right)} \mathrm{d} x=2 \pi \int_{1}^{2} \frac{1}{x\left(x^{2}+2 x+2\right)} \mathrm{d} x . \quad \text { (1 point) }
$$

2. Partial fraction (4 points in total):

By partial fraction (1 point), we can assume

$$
\frac{1}{x\left(x^{2}+2 x+2\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+2 x+2} . \quad(1 \text { point })
$$

Clear denominators, we have $1=A\left(x^{2}+2 x+2\right)+x(B x+C)$. (1 point) Thus, by comparing the coefficients, we get $A=\frac{1}{2}, B=\frac{-1}{2}$, and $C=-1$. (1 point)
*No matter what method is used, give all 4 points for the part of partial fraction if the final form is correct.
3. Evaluation (6 points in total): Hence, we have

$$
\begin{aligned}
V & =\pi \int_{1}^{2}\left(\frac{1}{x}-\frac{x+2}{x^{2}+2 x+2}\right) \mathrm{d} x \\
& =\pi\left(\int_{1}^{2} \frac{1}{x} \mathrm{~d} x-\int_{1}^{2} \frac{x+2}{x^{2}+2 x+2} \mathrm{~d} x\right) .
\end{aligned}
$$

Note that $\int_{1}^{2} \frac{1}{x} \mathrm{~d} x=\left.\ln |x|\right|_{1} ^{2}=\ln 2(1$ point $)$ and

$$
\begin{aligned}
\int_{1}^{2} \frac{x+2}{x^{2}+2 x+2} \mathrm{~d} x & =\int_{1}^{2} \frac{x+2}{(x+1)^{2}+1} \mathrm{~d} x \quad \text { Let } u=x+1, \mathrm{~d} u=\mathrm{d} x \\
& =\int_{2}^{3} \frac{u+1}{u^{2}+1} \mathrm{~d} u \quad(1 \text { point }) \\
& =\int_{2}^{3} \frac{u}{u^{2}+1} \mathrm{~d} u+\int_{2}^{3} \frac{1}{u^{2}+1} \mathrm{~d} u \quad \text { Let } v=u^{2}+1, \mathrm{~d} v=2 u \mathrm{~d} u \\
& =\frac{1}{2} \int_{5}^{10} \frac{\mathrm{~d} v}{v}(1 \text { point })+\left.\arctan (u)\right|_{2} ^{3}(1 \text { pint }) \\
& =\left.\frac{1}{2} \ln |v|\right|_{5} ^{10}+\arctan 3-\arctan 2 \\
& =\frac{1}{2} \ln 2+\arctan 3-\arctan 2 .(1 \text { point })
\end{aligned}
$$

To sum up,

$$
\begin{aligned}
V & =\pi\left(\ln 2-\left(\frac{1}{2} \ln 2+\arctan 3-\arctan 2\right)\right) \\
& =\pi\left(\frac{1}{2} \ln 2-\arctan 3+\arctan 2\right) \cdot(1 \text { point })
\end{aligned}
$$

3. For $t \neq-1$, consider the function $F(t)=\int_{t}^{\frac{1-t}{1+t}} \frac{\tan ^{-1} x}{1+x} \mathrm{~d} x$.
(a) (1%) Evaluate $F(\sqrt{2}-1)$.
(b) (6%) Prove that $F^{\prime}(t)=\frac{A}{1+t}$ with some constant A. Find the constant A.
(Hint. You may use, without proof, the fact that $\tan ^{-1} t+\tan ^{-1}\left(\frac{1-t}{1+t}\right)=\frac{\pi}{4}$ for $t \neq-1$.)
(c) (4\%) Use (a) and (b) to find $F(0)$. Hence evaluate $\int_{\frac{1}{3}}^{\frac{1}{2}} \frac{\tan ^{-1} x}{1+x} \mathrm{~d} x$.

Solution:

(a) For $t=\sqrt{2}-1$, we have $\frac{1-t}{1+t}=\frac{2-\sqrt{2}}{\sqrt{2}}=\sqrt{2}-1$. Hence,

$$
F(\sqrt{2}-1)=\int_{\sqrt{2}-1}^{\sqrt{2}-1} \frac{\tan ^{-1} x}{1+x} d x=0
$$

(b) By the FTC (1% is allocated for the trial of computing the derivative via FTC, this point is given even if the calculation is incorrect),

$$
\begin{aligned}
F^{\prime}(t) & =\frac{\tan ^{-1}\left(\frac{1-t}{1+t}\right)}{1+\frac{1-t}{1+t}}\left(\frac{1-t}{1+t}\right)^{\prime}-\frac{\tan ^{-1} t}{1+t} \quad(1 \% \text { for the correct application of FTC) } \\
& =\frac{\tan ^{-1}\left(\frac{1-t}{1+t}\right)}{1+\frac{1-t}{1+t}} \frac{-2}{(1+t)^{2}}-\frac{\tan ^{-1} t}{1+t} \quad\left(1 \% \text { for the correct calculation of }\left(\frac{1-t}{1+t}\right)^{\prime}=\frac{-2}{(1+t)^{2}}\right) \\
& \left.=-\frac{\tan ^{-1}\left(\frac{1-t}{1+t}\right)}{1+t}-\frac{\tan ^{-1} t}{1+t} \quad(1 \% \text { for the simplification (trial })\right) \\
& =-\frac{1}{1+t}\left(\tan ^{-1}\left(\frac{1-t}{1+t}\right)+\tan ^{-1} t\right) \quad(1 \% \text { for the correct simplification }) \\
& =-\frac{\pi}{4} \cdot \frac{1}{1+t} \quad(1 \% \text { for the correct answer }) .
\end{aligned}
$$

(c) By (2), we have

$$
F(t)=-\frac{\pi}{4} \cdot \ln |1+t|+C
$$

with some constant C (1% for the determination of $F(t)$ up to the constant). By (1),

$$
F(\sqrt{2}-1)=-\frac{\pi}{4} \cdot \ln (\sqrt{2})+C=0 \quad(1 \% \text { for setting up this equation })
$$

so $C=\frac{\pi}{8} \cdot \ln 2$. Hence, $F(0)=C=\frac{\pi}{8} \cdot \ln 2(1 \%$ for $F(0))$. Thus,

$$
\int_{\frac{1}{3}}^{\frac{1}{2}} \frac{\tan ^{-1} x}{1+x} d x=F\left(\frac{1}{3}\right)=\frac{\pi}{8} \cdot \ln \frac{9}{8}=\frac{\pi}{8} \cdot(2 \ln 3-3 \ln 2) \quad(1 \% \text { for the correct answer }) .
$$

4. Let C be the parametric curve defined by $\left\{\begin{array}{l}x(t)=\sec t \\ y(t)=\tan t\end{array} \quad, 0 \leq t<\frac{\pi}{2}\right.$. Also we let $P=(1,0)$ and $Q=(\sqrt{2}, 1)$.

(a) (4%) Find the equation of tangent of C at Q.
(b) (3%) Express the arclength of the portion of C from P to Q as an integral. Do NOT evaluate the integral.
(c) (7%) Let R be the region bounded by C, the x-axis, and the line $x=\sqrt{2}$. Find the area of R.

Solution:

(a) (1\%) The point Q corresponds to $t=\frac{\pi}{4}$.
(1\%) $\frac{d x}{d t}=\sec t \tan t$ and $\frac{d y}{d t}=\sec ^{2} t$.
Therefore, $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{\sec t}{\tan t}$.

$$
\underbrace{}_{(1 \%)}
$$

Hence, the equation of tangent is

$$
y-1=\frac{\sec \frac{\pi}{4}}{\tan \frac{\pi}{4}}(x-\sqrt{2})(1 \%) \Rightarrow y-1=\sqrt{2}(x-\sqrt{2})
$$

Marking scheme for 4a

1% - the value of t that corresponds to Q
1% - finding both $x^{\prime}(t)$ and $y^{\prime}(t)$ correctly
1% - formula for $d y / d x$ for a parametric curve
1% - correct equation of tangent line
(b) (1\%) The point P corresponds to $t=0$.

The arclength equals

$$
\int_{0}^{\frac{\pi}{4}} \underbrace{\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2} d t}}_{(1 \%)}=\underbrace{\int_{0}^{\frac{\pi}{4}} \sqrt{\sec ^{2} t \tan ^{2} t+\sec ^{4} t} d t}_{(1 \%)}
$$

[^0](c) The area of R equals
\[

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{4}} y(t) \cdot x^{\prime}(t) d t & =\int_{0}^{\frac{\pi}{4}} \tan t \cdot \sec t \tan t \mathrm{~d} t(1+1 \%) \\
& =\int_{0}^{\frac{\pi}{4}} \tan ^{2} t \cdot \sec t \mathrm{~d} t \\
& =\int_{0}^{\frac{\pi}{4}} \sec ^{3} t-\sec t \mathrm{~d} t \\
& =[\underbrace{\frac{\ln |\sec t+\tan t|+\sec t \tan t}{2}}_{(3 \%)}-\underbrace{\ln |\sec t+\tan t|}_{(1 \%)}]_{0}^{\frac{\pi}{4}} \\
& =\frac{\ln (\sqrt{2}+1)+\sqrt{2}}{2}-\ln (\sqrt{2}+1)=\frac{\sqrt{2}-\ln (\sqrt{2}+1)}{2}(1 \%)
\end{aligned}
$$
\]

Marking scheme for 4 c
1% - formula for area : $\int y d x$
1% - setting up the correct integral
$3 \%-\left(^{*}\right)$ integral of $\sec ^{3} t$
1% - integral of sec t
1% - answer
Remark for $\left(^{*}\right)$. No derivation is required. 1 M or 2 M can be awarded to a candidate with an incorrect evaluation who (1) attempts reasonably to compute $\int \sec ^{3} \theta d \theta$ or (2) makes minor typos.
5. The following diagram shows the graph of two polar curves $r=1+\cos \theta$ and $r=2-\cos \theta$.

(a) (4\%) Find, in polar coordinates, the intersection points of the two curves.
(b) (1%) Shade clearly in the diagram above the region that lies inside $r=1+\cos \theta$ and outside $r=2-\cos \theta$.
(c) (6%) Find the area of the region in (b).

Solution:

(a)

Since $r \geq 0$ for both polar curves and both are periodic over 2π, the intersections can only happen when the r values are the same for some θ value.
Set $1+\cos \theta=2-\cos \theta$, then $\cos \theta=\frac{1}{2}$ and $\theta= \pm \frac{\pi}{3}+2 k \pi, k \in \mathbb{Z}$.
When $\theta=\frac{\pi}{3}, r=\frac{3}{2}$. When $\theta=-\frac{\pi}{3}, r=\frac{3}{2}$.
The intersection points are $\left(\frac{3}{2}, \pm \frac{\pi}{3}\right)_{(r, \theta)}$.
(b)
$2-\cos \theta \leq 1+\cos \theta \quad \Rightarrow \cos \theta \geq \frac{1}{2} \Rightarrow-\frac{\pi}{3}+2 k \pi \leq \theta \leq \frac{\pi}{3}+2 k \pi$.
Shade in the right-most region.
(c)

The area is

$$
\begin{aligned}
& \int_{-\pi / 3}^{\pi / 3} \frac{1}{2}(1+\cos \theta)^{2} d \theta-\int_{-\pi / 3}^{\pi / 3} \frac{1}{2}(2-\cos \theta)^{2} d \theta \\
= & \frac{1}{2} \int_{-\pi / 3}^{\pi / 3}(6 \cos \theta-3) d \theta=\frac{3}{2}[2 \sin \theta-\theta]_{-\pi / 3}^{\pi / 3}=3 \sqrt{3}-\pi
\end{aligned}
$$

Grading:

(a) 2% for solving for θ and 2% for final answer. The student does not need to write $2 k \pi$ and the final answer could be any equivalent point. Any incorrect answer here still needs to be used in (c).
(b) No partial credit.
(c) 4% for the correct setup (2% for using answer in (a) and 2% for integrand) and 2% for evaluating the integral. An extra -1% if the answer is negative and the student just added absolute value for no reason.
6. An object of mass 1 kg falls near the surface of the earth experiences air resistance that is proportional to the square of its velocity. Therefore, its equation of motion is given by

$$
\frac{d v}{d t}=9.8-\frac{1}{5} v^{2}
$$

where $v=v(t)$ is the velocity of the object at time t. It is known that $0 \leq v<7$ and $v(0)=0$.
(a) (9%) Find $v(t)$.
(b) (1\%) Find $\lim _{t \rightarrow \infty} v(t)$.

Solution:

(a)

$$
\begin{aligned}
& \frac{d v}{d t}=\frac{1}{5}\left(49-v^{2}\right) \Rightarrow \int \frac{d v}{49-v^{2}}=\int \frac{1}{5} d t \quad 2 \mathrm{pts} \\
& \Rightarrow \frac{1}{14} \int \frac{1}{7-v}+\frac{1}{7+v} d v=\frac{1}{5} t+C \quad 2 \text { pts for correct partial fractions } \\
& \Rightarrow \ln \left|\frac{7+v}{7-v}\right|=2.8 t+C^{\prime} \quad 2 \text { pts for integrating } \frac{1}{7-v} \text { and } \frac{1}{7+v}
\end{aligned}
$$

Because $0 \leq v<7$, we conclude that $\frac{7+v}{7-v}=A e^{2.8 t}$, where A is a constant. $\quad 1 \mathrm{pt}$
Because $v(0)=0$, we have $1=A \cdot e^{0}=A \quad 1 \mathrm{pt}$
Hence $\frac{7+v}{7-v}=e^{2.8 t} \Rightarrow v(t)=7-\frac{14}{1+e^{2.8 t}}=\frac{7\left(e^{2.8 t}-1\right)}{e^{2.8 t}+1} \quad 1 \mathrm{pt}$
(b) $\lim _{t \rightarrow \infty} v(t)=\lim _{t \rightarrow \infty} 7-\frac{14}{1+e^{2.8 t}}=7 \quad 1 \mathrm{pt}$
7. Initially a tank contains 30 L of pure water. At time t min, brine solution of concentration $c(t)=e^{-\frac{t}{15}}(2+\sin t) \mathrm{kg} / \mathrm{L}$ enters the tank at a rate of $2 \mathrm{~L} / \mathrm{min}$. The solution is kept mixed thoroughly and drains from the tank at a rate of 2 $\mathrm{L} / \mathrm{min}$. Let $A(t)$ (in kg) be the amount of salt in the tank after t minutes.
(a) (4%) Derive a differential equation satisfied by $A(t)$.
(b) (8%) Hence solve for $A(t)$.

Solution:

(a) $\frac{d A}{d t}=$ rate in - rate out $=2 \times e^{-\frac{t}{15}}(2+\sin t)-2 \times \frac{A(t)}{30}=2 \cdot e^{-\frac{t}{15}}(2+\sin t)-\frac{1}{15} A(t)$

2 pts for rate in $=2 \times e^{-\frac{t}{15}}(2+\sin t)$
2 pts for rate out $=2 \times \frac{A}{30}$
(b) $\frac{d A}{d t}+\frac{1}{15} A(t)=2 \times e^{-\frac{t}{15}}(2+\sin t)$

Choose the integrating factor $I(x)=e^{\frac{t}{15}} \quad 2 \mathrm{pts}$
Then $e^{\frac{t}{15}}\left(\frac{d A}{d t}+\frac{1}{15} A(t)\right)=4+2 \sin t \Rightarrow\left(e^{\frac{t}{15}} \cdot A(t)\right)^{\prime}=4+2 \sin t \quad 2 \mathrm{pts}$
And $e^{\frac{t}{15}} A(t)=4 t-2 \cos t+C \quad 2 \mathrm{pts}$
Because $A(0)=0$, we have $e^{0} \cdot A(0)=0=-2 \cos 0+C$. Hence $C=2$. 1 pt
Therefore, $A(t)=4 t e^{-\frac{t}{15}}-2 e^{-\frac{t}{15}} \cos t+2 e^{-\frac{t}{15}} \quad 1 \mathrm{pt}$
8. Munch-Munch Restaurant in Taipei displays the poster in Figure 1 that indicates every customer should receive their orders within 90 seconds.

Figure 1

Figure 2

It is known that the waiting time for an order is a continuous random variable X whose density is given by

$$
f(x)=\left\{\begin{array}{ll}
0 & \text { if } x<0 \\
c \cdot 2^{-0.1 x} & \text { if } x \geq 0
\end{array}(x \text { in seconds })\right.
$$

Recall that $\mathbb{P}(a \leq X \leq b)=\int_{a}^{b} f(x) \mathrm{d} x$.
(a) (3%) Find the value of the constant c.
(b) (3%) A customer receives a gift card as a compensation if his/her order arrives after 90 seconds. Find the probability that a customer will receive a gift card.
(c) In order to shorten the serving time, the manager of the restaurant has purchased a few food serving robots (See Figure 2). Having implemented these robots, the serving time becomes a new random variable $Y=\frac{\sqrt{X}}{2}$.
(i) (3%) Write down the distribution function $F(y)=\mathbb{P}(Y \leq y)$ as an integral.
(ii) (3%) Find the probability density function $f_{Y}(y)$ of Y. (Hint. $\left.f_{Y}(y)=F^{\prime}(y)\right)$

Solution:

(a) (1\%) Since $\int_{0}^{\infty} c \cdot 2^{-0.1 x} \mathrm{~d} x=1$,

$$
\begin{aligned}
\text { LHS } & =\lim _{t \rightarrow \infty} \int_{0}^{t} c \cdot 2^{-0.1 x} d x \quad \text { See below } \\
& =\lim _{t \rightarrow \infty}\left[c \cdot \frac{2^{-0.1 x}}{-0.1 \ln 2}\right]_{0}^{t}(1 \%) \\
& =\lim _{t \rightarrow \infty} c\left(\frac{2^{-0.1 t}}{-0.1 \ln 2}+\frac{1}{0.1 \ln 2}\right) \\
& =\frac{c}{0.1 \ln 2}
\end{aligned}
$$

Hence $c=0.1 \ln 2 .(1 \%)$
(b)

$$
\begin{aligned}
\mathbb{P}(X>90)=\underbrace{\int_{90}^{\infty} 0.1 \ln 2 \cdot 2^{-0.1 x} d x}_{(1 \%)} & =\underbrace{\lim _{t \rightarrow \infty} \int_{90}^{t} 0.1 \ln 2 \cdot 2^{-0.1 x} d x}_{(1 \%)} \\
& =\lim _{t \rightarrow \infty}\left[-2^{-0.1 x}\right]_{x=t}^{x=90} \\
& =\lim _{t \rightarrow \infty}\left(2^{-9}-2^{-0.1 t}\right) \\
& =2^{-9}(1 \%)
\end{aligned}
$$

Marking scheme for 8ab

1% - knowing that the total probability equals 1
1% - anti-derivative of $2^{-0.1 x}$
1% - correct value of c
1% - setting up the correct integral for $\mathbb{P}(X>90)$
$1 \%-\left(^{*}\right)$ definition of improper integral
1% - correct answer
Remark for $\left(^{*}\right)$. The definition of improper integrals need to appear at least once in either 8a or 8 b . Otherwise, this 1% will be taken off.
(c) (a) For $y \geq 0$ (1\%), we have

$$
F(y)=\mathbb{P}(Y \leq y)=\mathbb{P}\left(\frac{\sqrt{X}}{2} \leq y\right)=\underbrace{\mathbb{P}\left(X \leq 4 y^{2}\right)}_{(1 \%)}=\underbrace{\int_{0}^{4 y^{2}} f(x) \mathrm{d} x}_{(1 \%)}
$$

and for $y<0$, we have $F(y)=0$.
(b) Let $f_{Y}(y)$ be the density of Y. For $y \geq 0$ (See above), by FTC, we have

$$
f_{Y}(y)=F^{\prime}(y)=\underbrace{f\left(4 y^{2}\right) \cdot 8 y}_{(1 \%)}=\underbrace{0.1 \ln 2 \cdot 2^{-0.4 y^{2}} \cdot 8 y}_{(2 \%)} .
$$

and for $y<0$, we have $f_{Y}(y)=0$.
Marking scheme for 8c
$1 \%-\left(^{*}\right)$ distinguish the cases $y>0$ and $y \leq 0$
1% - transforming $\mathbb{P}(Y \leq y)$ into $\mathbb{P}\left(X \leq 4 y^{2}\right)$
1% - correct distribution function (both integrand and integration limits need to be correct)
1% - differentiating $F(y)$ by FTC
2% - correct density $f_{Y}(y)$ (1% if a candidate obtains incorrect value for c)
Remark for $\left(^{*}\right)$. Candidates need to demonstrate the differences of the cases when $y<0$ and $y \geq 0$ in either (c) (i) or (c) (ii). Otherwise, this 1% will not be awarded.

[^0]: Marking scheme for 4 b
 1% - the value of t that corresponds to P
 1% - correct arclength element $d s$ in parametric form
 1% - correct answer (correct integrand AND integration limits)

