1. Evaluate the following integrals.

(a) (5%)
$$\int \frac{1}{x^{\frac{1}{2}} + x^{\frac{2}{3}}} dx$$
 (b) (6%) $\int \ln(x^2 + 1) dx$. (c) (7%) $\int_2^3 \frac{x}{\sqrt{4x - x^2}} dx$

Solution:

(a) Let $x = t^6$ (2 points). So $dx/dt = 6t^5$. The original integral becomes

$$\int \frac{1}{t^3 + t^4} 6t^5 dt = \int \frac{6t^2}{1 + t} dt$$

= $6 \int t - 1 + \frac{1}{1 + t} dt$
= $6\left(\frac{t^2}{2} - t + \ln|1 + t|\right) + C$
= $3x^{\frac{1}{3}} - 6x^{\frac{1}{6}} + 6\ln|1 + x^{\frac{1}{6}}| + C.(3 \text{ points})$

(b) Using integration by parts, we get

$$\int \ln(x^2 + 1) dx = x \ln(x^2 + 1) - \int x \frac{2x}{x^2 + 1} dx \text{ (3 points)}$$
$$= x \ln(x^2 + 1) - \int 2 - \frac{2}{x^2 + 1} dx$$
$$= x \ln(x^2 + 1) - 2x + 2 \tan^{-1} x + C. \text{(3 points)}$$

(c) First we complete the square

$$\int_{2}^{3} \frac{x}{\sqrt{4x - x^{2}}} dx = \int_{2}^{3} \frac{x}{\sqrt{4 - (x - 2)^{2}}} dx. (2 \text{ points})$$

Then we use the substitution $x - 2 = 2\sin\theta$ and $dx/d\theta = 2\cos\theta$ (2 points). Therefore, the integral becomes

$$\int_{0}^{\frac{\pi}{6}} \frac{2\sin\theta + 2}{2|\cos\theta|} 2\cos\theta d\theta \quad (\text{because } 0 \le \theta \le \pi/6, \cos\theta \text{ is positive})$$
$$= \int_{0}^{\frac{\pi}{6}} 2\sin\theta + 2d\theta$$
$$= 2(-\cos\theta + \theta) \Big|_{0}^{\frac{\pi}{6}} = 2 - \sqrt{3} + \frac{\pi}{3} \cdot (3 \text{ points})$$

2. (12%) Let R be the region enclosed by the curve $y = \frac{1}{x^2(x^2 + 2x + 2)}$, $1 \le x \le 2$ and the x-axis. Find the volume of the solid obtained by rotating R about the y-axis.

Solution:

1. Set up integral (2 points in total):

By shell's method (1 point), the volume is

$$V = \int_{1}^{2} 2\pi x \cdot \frac{1}{x^{2}(x^{2}+2x+2)} \, \mathrm{d}x = 2\pi \int_{1}^{2} \frac{1}{x(x^{2}+2x+2)} \, \mathrm{d}x. \quad (1 \text{ point})$$

2. Partial fraction (4 points in total):

By partial fraction (1 point), we can assume

$$\frac{1}{x(x^2+2x+2)} = \frac{A}{x} + \frac{Bx+C}{x^2+2x+2}.$$
 (1 point)

Clear denominators, we have $1 = A(x^2 + 2x + 2) + x(Bx + C)$. (1 point) Thus, by comparing the coefficients, we get $A = \frac{1}{2}$, $B = \frac{-1}{2}$, and C = -1. (1 point)

*No matter what method is used, give all 4 points for the part of partial fraction if the final form is correct. **3. Evaluation (6 points in total):** Hence, we have

$$V = \pi \int_{1}^{2} \left(\frac{1}{x} - \frac{x+2}{x^{2}+2x+2} \right) dx$$
$$= \pi \left(\int_{1}^{2} \frac{1}{x} dx - \int_{1}^{2} \frac{x+2}{x^{2}+2x+2} dx \right)$$

Note that $\int_{1}^{2} \frac{1}{x} dx = \ln |x| \Big|_{1}^{2} = \ln 2 \ (1 \text{ point}) \text{ and}$

$$\begin{split} \int_{1}^{2} \frac{x+2}{x^{2}+2x+2} \, \mathrm{d}x &= \int_{1}^{2} \frac{x+2}{(x+1)^{2}+1} \, \mathrm{d}x \quad \text{Let } u = x+1, \, \mathrm{d}u = \mathrm{d}x \\ &= \int_{2}^{3} \frac{u+1}{u^{2}+1} \, \mathrm{d}u \quad (1 \text{ point}) \\ &= \int_{2}^{3} \frac{u}{u^{2}+1} \, \mathrm{d}u + \int_{2}^{3} \frac{1}{u^{2}+1} \, \mathrm{d}u \quad \text{Let } v = u^{2}+1, \, \mathrm{d}v = 2u \, \mathrm{d}u \\ &= \frac{1}{2} \int_{5}^{10} \frac{\mathrm{d}v}{v} \quad (1 \text{ point}) \quad + \arctan(u) \Big|_{2}^{3} \quad (1 \text{ pint}) \\ &= \frac{1}{2} \ln |v| \Big|_{5}^{10} + \arctan 3 - \arctan 2 \\ &= \frac{1}{2} \ln 2 + \arctan 3 - \arctan 2. \quad (1 \text{ point}) \end{split}$$

To sum up,

$$V = \pi \left(\ln 2 - \left(\frac{1}{2} \ln 2 + \arctan 3 - \arctan 2 \right) \right)$$
$$= \pi \left(\frac{1}{2} \ln 2 - \arctan 3 + \arctan 2 \right). (1 \text{ point})$$

3. For $t \neq -1$, consider the function $F(t) = \int_t^{\frac{1-t}{1+t}} \frac{\tan^{-1} x}{1+x} dx$.

(a) (1%) Evaluate $F(\sqrt{2}-1)$.

(b) (6%) Prove that $F'(t) = \frac{A}{1+t}$ with some constant A. Find the constant A. (Hint. You may use, without proof, the fact that $\tan^{-1} t + \tan^{-1} \left(\frac{1-t}{1+t}\right) = \frac{\pi}{4}$ for $t \neq -1$.) (c) (4%) Use (a) and (b) to find F(0). Hence evaluate $\int_{\frac{1}{3}}^{\frac{1}{2}} \frac{\tan^{-1} x}{1+x} dx$.

Solution:

- (a) For $t = \sqrt{2} 1$, we have $\frac{1-t}{1+t} = \frac{2-\sqrt{2}}{\sqrt{2}} = \sqrt{2} 1$. Hence, $F(\sqrt{2} - 1) = \int_{\sqrt{2}-1}^{\sqrt{2}-1} \frac{\tan^{-1} x}{1+x} dx = 0 \quad (1\%).$
- (b) By the FTC (1% is allocated for the trial of computing the derivative via FTC, this point is given even if the calculation is incorrect),

$$\begin{aligned} F'(t) &= \frac{\tan^{-1}\left(\frac{1-t}{1+t}\right)}{1+\frac{1-t}{1+t}} \left(\frac{1-t}{1+t}\right)' - \frac{\tan^{-1}t}{1+t} & (1\% \text{ for the correct application of FTC}) \\ &= \frac{\tan^{-1}\left(\frac{1-t}{1+t}\right)}{1+\frac{1-t}{1+t}} \frac{-2}{(1+t)^2} - \frac{\tan^{-1}t}{1+t} & \left(1\% \text{ for the correct calculation of } \left(\frac{1-t}{1+t}\right)' = \frac{-2}{(1+t)^2}\right) \\ &= -\frac{\tan^{-1}\left(\frac{1-t}{1+t}\right)}{1+t} - \frac{\tan^{-1}t}{1+t} & (1\% \text{ for the simplification (trial)}) \\ &= -\frac{1}{1+t} \left(\tan^{-1}\left(\frac{1-t}{1+t}\right) + \tan^{-1}t\right) & (1\% \text{ for the correct simplification}) \\ &= -\frac{\pi}{4} \cdot \frac{1}{1+t} & (1\% \text{ for the correct answer}). \end{aligned}$$

(c) By (2), we have

$$F(t) = -\frac{\pi}{4} \cdot \ln|1+t| + C$$

with some constant C (1% for the determination of F(t) up to the constant). By (1),

$$F(\sqrt{2}-1) = -\frac{\pi}{4} \cdot \ln(\sqrt{2}) + C = 0 \quad (1\% \text{ for setting up this equation}),$$

so
$$C = \frac{\pi}{8} \cdot \ln 2$$
. Hence, $F(0) = C = \frac{\pi}{8} \cdot \ln 2$ (1% for $F(0)$). Thus,

$$\int_{\frac{1}{3}}^{\frac{1}{2}} \frac{\tan^{-1} x}{1+x} dx = F\left(\frac{1}{3}\right) = \frac{\pi}{8} \cdot \ln \frac{9}{8} = \frac{\pi}{8} \cdot (2\ln 3 - 3\ln 2) \quad (1\% \text{ for the correct answer}).$$

4. Let C be the parametric curve defined by $\begin{cases} x(t) = \sec t \\ y(t) = \tan t \end{cases}$, $0 \le t < \frac{\pi}{2}$. Also we let P = (1,0) and $Q = (\sqrt{2},1)$.

- (a) (4%) Find the equation of tangent of C at Q.
- (b) (3%) Express the arclength of the portion of C from P to Q as an integral. Do NOT evaluate the integral.
- (c) (7%) Let R be the region bounded by C, the x-axis, and the line $x = \sqrt{2}$. Find the area of R.

Solution:

(a) (1%) The point Q corresponds to $t = \frac{\pi}{4}$. (1%) $\frac{dx}{dt} = \sec t \tan t$ and $\frac{dy}{dt} = \sec^2 t$.

(170)
$$\frac{dt}{dt} = \sec t \tan t$$
 and $\frac{dt}{dt} = \sec t$.
Therefore, $\frac{dy}{dx} = \frac{dy/dt}{\frac{dx}{dt}} = \frac{\sec t}{\tan t}$.

Hence, the equation of tangent is

$$y - 1 = \frac{\sec \frac{\pi}{4}}{\tan \frac{\pi}{4}} (x - \sqrt{2})(1\%) \Rightarrow y - 1 = \sqrt{2}(x - \sqrt{2})$$

Marking scheme for 4a

- 1% the value of t that corresponds to Q
- 1% finding both x'(t) and y'(t) correctly
- 1% formula for dy/dx for a parametric curve
- 1% correct equation of tangent line

(b) (1%) The point P corresponds to t = 0. The arclength equals

$$\int_0^{\frac{\pi}{4}} \underbrace{\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt}_{(1\%)} = \underbrace{\int_0^{\frac{\pi}{4}} \sqrt{\sec^2 t \tan^2 t + \sec^4 t} dt}_{(1\%)}$$

Marking scheme for 4b

- 1% the value of t that corresponds to P
- 1% correct arclength element ds in parametric form
- 1% correct answer (correct integrand AND integration limits)

5. The following diagram shows the graph of two polar curves $r = 1 + \cos \theta$ and $r = 2 - \cos \theta$.

- (a) (4%) Find, in polar coordinates, the intersection points of the two curves.
- (b) (1%) Shade clearly in the diagram above the region that lies inside $r = 1 + \cos \theta$ and outside $r = 2 \cos \theta$.
- (c) (6%) Find the area of the region in (b).

Solution:

(a)

Since $r \ge 0$ for both polar curves and both are periodic over 2π , the intersections can only happen when the r values are the same for some θ value.

Set $1 + \cos \theta = 2 - \cos \theta$, then $\cos \theta = \frac{1}{2}$ and $\theta = \pm \frac{\pi}{3} + 2k\pi$, $k \in \mathbb{Z}$. When $\theta = \frac{\pi}{3}$, $r = \frac{3}{2}$. When $\theta = -\frac{\pi}{3}$, $r = \frac{3}{2}$. The intersection points are $\left(\frac{3}{2}, \pm \frac{\pi}{3}\right)_{(r,\theta)}$. (b) $2 - \cos \theta \le 1 + \cos \theta \implies \cos \theta \ge \frac{1}{2} \implies -\frac{\pi}{3} + 2k\pi \le \theta \le \frac{\pi}{3} + 2k\pi$. Shade in the right-most region. (c)

The area is

$$\int_{-\pi/3}^{\pi/3} \frac{1}{2} (1 + \cos\theta)^2 d\theta - \int_{-\pi/3}^{\pi/3} \frac{1}{2} (2 - \cos\theta)^2 d\theta$$
$$= \frac{1}{2} \int_{-\pi/3}^{\pi/3} (6\cos\theta - 3) d\theta = \frac{3}{2} [2\sin\theta - \theta]_{-\pi/3}^{\pi/3} = 3\sqrt{3} - \pi$$

Grading:

(a) 2% for solving for θ and 2% for final answer. The student does not need to write $2k\pi$ and the final answer could be any equivalent point. Any incorrect answer here still needs to be used in (c).

(b) No partial credit.

(c) 4% for the correct setup (2% for using answer in (a) and 2% for integrand) and 2% for evaluating the integral. An extra -1% if the answer is negative and the student just added absolute value for no reason.

6. An object of mass 1 kg falls near the surface of the earth experiences air resistance that is proportional to the square of its velocity. Therefore, its equation of motion is given by

$$\frac{dv}{dt} = 9.8 - \frac{1}{5}v^2.$$

where v = v(t) is the velocity of the object at time t. It is known that $0 \le v < 7$ and v(0) = 0.

(a) (9%) Find v(t).

(b) (1%) Find $\lim_{t\to\infty} v(t)$.

Solution:
(a)
$\frac{dv}{dt} = \frac{1}{5}(49 - v^2) \Rightarrow \int \frac{dv}{49 - v^2} = \int \frac{1}{5}dt \qquad 2 \text{ pts}$
$\Rightarrow \frac{1}{14} \int \frac{1}{7-v} + \frac{1}{7+v} dv = \frac{1}{5}t + C \qquad 2 \text{ pts for correct partial fractions}$
$\Rightarrow \ln \left \frac{7+v}{7-v} \right = 2.8t + C' \qquad 2 \text{ pts for integrating } \frac{1}{7-v} \text{ and } \frac{1}{7+v}$
Because $0 \le v < 7$, we conclude that $\frac{7+v}{7-v} = Ae^{2.8t}$, where A is a constant. 1 pt
Because $v(0) = 0$, we have $1 = A \cdot e^0 = A$ 1 pt
Hence $\frac{7+v}{7-v} = e^{2.8t} \Rightarrow v(t) = 7 - \frac{14}{1+e^{2.8t}} = \frac{7(e^{2.8t}-1)}{e^{2.8t}+1}$ 1 pt
(b) $\lim_{t \to \infty} v(t) = \lim_{t \to \infty} 7 - \frac{14}{1 + e^{2.8t}} = 7$ 1 pt

- 7. Initially a tank contains 30 L of pure water. At time t min, brine solution of concentration $c(t) = e^{-\frac{t}{15}}(2 + \sin t) \text{ kg/L}$ enters the tank at a rate of 2 L/min. The solution is kept mixed thoroughly and drains from the tank at a rate of 2 L/min. Let A(t) (in kg) be the amount of salt in the tank after t minutes.
 - (a) (4%) Derive a differential equation satisfied by A(t).
 - (b) (8%) Hence solve for A(t).

Solution:
(a)
$$\frac{dA}{dt} = \text{rate in - rate out} = 2 \times e^{-\frac{t}{15}} (2 + \sin t) - 2 \times \frac{A(t)}{30} = 2 \cdot e^{-\frac{t}{15}} (2 + \sin t) - \frac{1}{15} A(t)$$

2 pts for rate in $= 2 \times e^{-\frac{t}{15}} (2 + \sin t)$
2 pts for rate out $= 2 \times \frac{A}{30}$
(b) $\frac{dA}{dt} + \frac{1}{15} A(t) = 2 \times e^{-\frac{t}{15}} (2 + \sin t)$
Choose the integrating factor $I(x) = e^{\frac{t}{15}}$ 2 pts
Then $e^{\frac{t}{15}} \left(\frac{dA}{dt} + \frac{1}{15} A(t) \right) = 4 + 2 \sin t \Rightarrow \left(e^{\frac{t}{15}} \cdot A(t) \right)' = 4 + 2 \sin t$ 2 pts
And $e^{\frac{t}{15}} A(t) = 4t - 2 \cos t + C$ 2 pts
Because $A(0) = 0$, we have $e^{0} \cdot A(0) = 0 = -2 \cos 0 + C$. Hence $C = 2$. 1 pt
Therefore, $A(t) = 4te^{-\frac{t}{15}} - 2e^{-\frac{t}{15}} \cos t + 2e^{-\frac{t}{15}} = 1$ pt

8. Munch-Munch Restaurant in Taipei displays the poster in Figure 1 that indicates every customer should receive their orders within 90 seconds.

It is known that the waiting time for an order is a continuous random variable X whose density is given by

$$f(x) = \begin{cases} 0 & \text{if } x < 0\\ c \cdot 2^{-0.1x} & \text{if } x \ge 0 \end{cases} (x \text{ in seconds}).$$

Recall that $\mathbb{P}(a \le X \le b) = \int_a^b f(x) \, \mathrm{d}x.$

- (a) (3%) Find the value of the constant c.
- (b) (3%) A customer receives a gift card as a compensation if his/her order arrives after 90 seconds. Find the probability that a customer will receive a gift card.
- (c) In order to shorten the serving time, the manager of the restaurant has purchased a few food serving robots (See Figure 2). Having implemented these robots, the serving time becomes a new random variable $Y = \frac{\sqrt{X}}{2}$.
 - (i) (3%) Write down the distribution function $F(y) = \mathbb{P}(Y \leq y)$ as an integral.
 - (ii) (3%) Find the probability density function $f_Y(y)$ of Y. (Hint. $f_Y(y) = F'(y)$)

Solution:

(a) (1%) Since
$$\int_0^\infty c \cdot 2^{-0.1x} dx = 1$$
,
LHS = $\lim_{t \to \infty} \int_0^t c \cdot 2^{-0.1x} dx$ See below
= $\lim_{t \to \infty} \left[c \cdot \frac{2^{-0.1x}}{-0.1 \ln 2} \right]_0^t (1\%)$
= $\lim_{t \to \infty} c \left(\frac{2^{-0.1t}}{-0.1 \ln 2} + \frac{1}{0.1 \ln 2} \right)$
= $\frac{c}{0.1 \ln 2}$

Hence $c = 0.1 \ln 2.(1\%)$

(b)

$$\mathbb{P}(X > 90) = \underbrace{\int_{90}^{\infty} 0.1 \ln 2 \cdot 2^{-0.1x} dx}_{(1\%)} = \underbrace{\lim_{t \to \infty} \int_{90}^{t} 0.1 \ln 2 \cdot 2^{-0.1x} dx}_{(1\%)}$$
$$= \lim_{t \to \infty} \left[-2^{-0.1x} \right]_{x=90}^{x=t}$$
$$= \lim_{t \to \infty} \left(2^{-9} - 2^{-0.1t} \right)$$
$$= 2^{-9} (1\%)$$

Marking scheme for 8ab 1% - knowing that the total probability equals 1 1% - anti-derivative of $2^{-0.1x}$ 1% - correct value of c 1% - correct value of c 1% - setting up the correct integral for $\mathbb{P}(X > 90)$ 1% - (*) definition of improper integral 1% - correct answer **Remark for (*).** The definition of improper integrals need to appear at least once in either 8a or

8b. Otherwise, this 1% will be taken off.

(c) (a) For $y \ge 0$ (1%), we have

$$F(y) = \mathbb{P}(Y \le y) = \mathbb{P}\left(\frac{\sqrt{X}}{2} \le y\right) = \underbrace{\mathbb{P}\left(X \le 4y^2\right)}_{(1\%)} = \underbrace{\int_0^{4y^2} f(x) \, \mathrm{d}x}_{(1\%)}$$

and for y < 0, we have F(y) = 0.

(b) Let $f_Y(y)$ be the density of Y. For $y \ge 0$ (See above), by FTC, we have

$$f_Y(y) = F'(y) = \underbrace{f(4y^2) \cdot 8y}_{(1\%)} = \underbrace{0.1 \ln 2 \cdot 2^{-0.4y^2} \cdot 8y}_{(2\%)}.$$

and for y < 0, we have $f_Y(y) = 0$.

Marking scheme for 8c

1% - (*) distinguish the cases y > 0 and $y \le 0$

1% - transforming $\mathbb{P}(Y \leq y)$ into $\mathbb{P}(X \leq 4y^2)$

1% - correct distribution function (both integrand and integration limits need to be correct)

1% - differentiating F(y) by FTC

2% - correct density $f_Y(y)$ (1% if a candidate obtains incorrect value for c)

Remark for (*). Candidates need to demonstrate the differences of the cases when y < 0 and $y \ge 0$ in either (c) (i) or (c) (ii). Otherwise, this 1% will not be awarded.