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1. (10%) Let V be the subspace of R4, V = {(x, y, z,w) ∈ R4
∶ x − y − z = 0, y − z +w = 0,2x + y − 5z + 3w = 0}.

(a) (7%) Find the dimension and a basis of V .

(b) (3%) Is (1,−1,−1,0) orthogonal to every vector in V ?

Solution:

(a)

Solve the system of equations
⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x − y − z = 0,

y − z +w = 0,

2x + y − 5z + 3w = 0.

Convert into matrix

⎛
⎜
⎝

1 −1 −1 0
0 1 −1 1
2 1 −5 3

⎞
⎟
⎠

⎛
⎜
⎜
⎜
⎝

x
y
z
w

⎞
⎟
⎟
⎟
⎠

=
⎛
⎜
⎝

0
0
0

⎞
⎟
⎠

Reduce the matrix to obtain

⎛
⎜
⎝

1 0 −2 1
0 1 −1 1
0 0 0 0

⎞
⎟
⎠

⎛
⎜
⎜
⎜
⎝

x
y
z
w

⎞
⎟
⎟
⎟
⎠

=
⎛
⎜
⎝

0
0
0

⎞
⎟
⎠

The dimension of V is two. We can find a basis by setting z and w as our variables. So x = 2z −w and y = z −w.
In vector form the basis is

⎛
⎜
⎜
⎜
⎝

2
1
1
0

⎞
⎟
⎟
⎟
⎠

and

⎛
⎜
⎜
⎜
⎝

−1
−1
0
1

⎞
⎟
⎟
⎟
⎠

(b)

The answer is yes because x − y − z = 0, which is the inner product of (1,−1,−1,0) and (x, y, z,w), from part
(a).

Grading:

� (a) Just like quiz 1, because linear algebra statements have many different ways to be phrased, make sure
to read the student’s work. (-1%) for any step that is unclear or confusing. (-2%) for any conceptual
mistakes.

� (b) All or nothing. They must have an explanation to get points.
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2. (10%) Consider f(x, y, z) = 2x2
+ 3y2 + 3z2 + 4xy − 2yz.

(a) (3%) Write down its associated symmetric matrix Q.

(b) (5%) Determine the definitness of Q.

(c) (2%) Is the origin (0,0,0) a local maximum, local minimum, or a saddle point of f(x)?

Solution:

(a) Q =
⎛
⎜
⎝

2 2 0
2 3 −1
0 −1 3

⎞
⎟
⎠
. (Each of a11, a12, a13, a22, a23, a33 counts for 0.5 point.)

(b) Sol 1: LPM1 = 2 > 0, LPM2 = ∣
2 2
2 3

∣ = 2 > 0, LPM3 =

RRRRRRRRRRRRR

2 2 0
2 3 −1
0 −1 3

RRRRRRRRRRRRR

= 4 > 0

Because LPM1, LPM2, LPM3 are all positive, Q is positive definite by Sylvester Criterion.
(1 point for LPM1, 1 point for LPM2, 1 point for LPM3, 1 point for positive definite, 1 point for correct
reasoning.
If Students have wrong LPM’s but they conclude definitness by correct reasoning, they get partial credits.)

Sol 2:
RRRRRRRRRRRRR

2 − λ 2 0
2 3 − λ −1
0 −1 3 − λ

RRRRRRRRRRRRR

= (2 − λ)[(3 − λ)2 − 1] − 2(6 − 2λ) = (2 − λ)(λ2
− 6λ + 8) + 4λ − 12 = −λ3

+ 8λ2
− 16λ + 4,

λ ≈ 4.903,2.806,0.291.

Because all eigenvalues are positive, Q is positive definite. (2 points for det(Q−λI). 2 points for computing
eigenvalues, 1 point for positive definite.)

(c) Because Q is positive definite, f(x, y, z) = (x, y, z)Q
⎛
⎜
⎝

x
y
z

⎞
⎟
⎠
> 0 = f(0,0,0).

Hence f(0,0,0) is a local minimum. (2 points)
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3. (24%) You want to have lunch containing rice, vegetables and meat with x, y, z units respectively. Your utility

function is U(x, y, z) =
1

4
lnx +

1

4
ln y +

1

2
ln z. Because you have a budget constraint and you are on a diet, you are

subject to

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x + 2y + 5z ≤ 20 (budget constraint)

x ≤ 4 (less rice)

y ≥ 3 (more vegetables)

. Try to maximize your utility.

(a) (4%) Check whether NDCQ is satisfied.

(b) (2%) Write down the Lagrangian function.

(c) (6%) Write down the complete first order conditions.

(d) (7%) Find the maximum utility.

(e) (5%) Estimate the maximum utility if you are on an easier diet, x ≤ 4.1, y ≥ 2.8.

Solution:

(a) Let g1(x, y, z) = x + 2y + 5z, g2(x, y, z) = x, g3(x, y, z) = −y.
Then constraints are g1(x, y, z) ≤ 20, g2(x, y, z) ≤ 4, g3 ≤ −3.
∇g1 = (1,2,5), ∇g2 = (1,0,0), ∇g3 = (0,−1,0). (2 points for ∇g1, ∇g2, ∇g3)
∇g1 ≠ 0, ∇g2 ≠ 0, and ∇g3 ≠ 0.
Any two of {∇g1,∇g2,∇g3} are linearly independent. ∇g1, ∇g2 and ∇g3 are linearly independent.
Hence no matter what constraints are binding, NDCQ is always satisfied. (2 points for arguing that NDCQ
is satisfied.)

(b) L(x, y, z, λ1, λ2, λ3) =
1

4
lnx +

1

4
ln y +

1

2
ln z − λ1(x + 2y + 5z − 20) − λ2(x − 4) − λ3(−y + 3).

(2 points. The answer L = U − λ1(x + 2y + 5z − 20) − λ2(x − 4) − λ3(y − 3) gets 1 point.)

(c)

Lx =
1

4x
− λ1 − λ2 = 0 (1)(1 point)

Ly =
1

4y
− 2λ1 + λ3 = 0 (2)(1 point)

Lz =
1

2z
− 5λ1 = 0 (3)(1 point)

λ1(x + 2y + 5z − 20) = 0 (4)(0.5 point)

λ2(x − 4) = 0 (5)(0.5 point)

λ3(−y + 3) = 0 (6)(0.5 point)

x + 2y + 5z ≤ 20, x ≤ 4, y ≥ 3 (7)(0.5 point)

λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0 (8)(1 point)

(d) Solve FOC.

(3) ⇒ λ1 =
1

10z
> 0. Hence (4) ⇒ x + 2y + 5z = 20. (1 point)

From (8) λ2 ≥ 0, λ3 ≥ 0, we discuss the following 4 cases.

Case λ2 = λ3 = 0

Then (1)(2)(3) ⇒
1

4x
= λ1,

1

4y
= 2λ1,

1

2z
= 5λ1 ⇒ x =

1

4λ1
, y =

1

8λ1
, z =

1

10λ1

x+2y+5z =
1

4λ1
+

1

4λ1
+

1

2λ1
= 20⇒

1

λ1
= 20, x = 5, y =

5

2
which is contradict to x ≤ 4 and y ≥ 3. (1 point)

Case λ2 = 0, λ3 > 0

Then (6) ⇒ y = 3. (1)(3) ⇒
1

4x
= λ1,

1

2z
= 5λ1

⇒ x =
1

4λ1
, z =

1

10λ1
and x + 2y + 5z =

1

4λ1
+ 6 +

1

2λ1
= 20

⇒
3

4

1

λ1
= 14 ⇒

1

λ1
=
56

3
, x =

1

4λ1
=
14

3
> 4 contradiction! (1 point)

Case λ2 > 0, λ3 = 0

Then (5)⇒ x = 4, (2)(3)⇒
1

4y
= 2λ1,

1

2z
= 5λ1. ⇒ y =

1

8λ1
, z =

1

10λ1
and x+2y+5z = 4+

1

4λ1
+

1

2λ1
= 20
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⇒
3

4

1

λ1
= 16 ⇒

1

λ1
=
64

3
and y =

8

3
< 3. which is a contradiction. (1 point)

Case λ2 > 0, λ3 > 0
(5)(6) ⇒ x = 4, y = 3. Then x + 2y + 5z = 20 ⇒ z = 2
⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) ⇒
1

16
= λ1 + λ2

(2) ⇒
1

12
= 2λ1 − λ3

(3) ⇒
1

4
= 5λ1

Hence λ1 =
1

20
, λ2 =

1

16
−

1

20
=

1

80
, λ3 =

1

10
−

1

12
=

1

60
.

The solution is (x, y, z, λ1, λ2, λ3) = (4,3,2,
1

20
,
1

80
,
1

60
).

The maximum ultility is
1

4
ln 4 +

1

4
ln 3 +

1

2
ln 2 = ln 2 +

1

4
ln 3.

(1 point for (x, y, z) = (4,3,2), 1 point for (λ1, λ2, λ3) = (
1

20
,
1

80
,
1

60
), 1 point for the maximum ultility

ln 2 +
1

4
ln 3.)

(e) Consider the optimization problem. Maxize
1

4
lnx +

1

4
ln y +

1

2
ln z subject to x + 2y + 5z ≤ 20, x ≤ a, y ≥ b.

The Lagrangian is

L =
1

4
lnx +

1

4
ln y +

1

2
ln z − λ1(x + 2y + 5z − 20) − λ2(x − a) − λ3(−y + b). (1 point)

Let the maximum ultility be Umax(a, b).

Then Umax(4,3) = ln 2 +
1

4
ln 3.

∂Umax

∂a
∣
(4,3)

= λ2∣
(4,3)

=
1

80
,
∂Umax

∂b
∣
(4,3)

= −λ3∣
(4,3)

= −
1

60
. (1 point for

∂Umax

∂a
, 1 point for

∂Umax

∂b
)

Hence Umax(4.1,2.8) ≈ Umax(4,3) +
∂Umax

∂a
× (0.1) +

∂Umax

∂b
× (−0.2) = ln 2 +

1

4
ln 3 +

1

800
+

1

300
(1 point for linear approximation, 1 point for final answer.)
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4. (18%) Consider the optimization problem:

Maximize f(x, y, z) = xyz subject to x + y + z2 ≤ 5, x ≥ 0, y ≥ 0, z ≥ 0.

(a) (4%) Verify that Kuhn-Tucker’s NDCQ is satisfied for this problem.

(b) (2%) Write down the Kuhn-Tucker’s Lagrangian.

(c) (6%) Write down the complete first order conditions in Kuhn-Tucker’s formulation.

(d) (6%) Find solutions of the first order conditions such that x > 0, y > 0, z > 0.

Solution:

(a) Suppose that x+y+z2 ≤ 5 is binding. (1%) The full Jacobian matrix is (1 1 2z). (1%). For x, y, z ≠ 0. the

full Jacobian matrix is (1 1 2z). For x = 0, y, z ≠ 0 and y = 0, x, z ≠ 0, the reduced Jacobian matrix is (1 2z).

For z = 0, x, y ≠ 0, the reduced Jacobian matrix is (1 1). For x = z = 0, y ≠ 0 and y = z = 0, x ≠ 0, the reduced

Jacobian matrix is (1). For x = y = 0, then z = 5 and the reduced Jacobian matrix is (10). All the case is rank
1. So Kuhn-Tucker’s NDCQ is satisfied (2%).
(b) The Kuhn-Tucker’s Lagrangian is given by

L̃(x, y, z, λ) = xyz − λ(x + y + z2 − 5). (2%)

(c) The FOCs are

xL̃x = x(yz − λ) = 0 (1)

yL̃y = y(xz − λ) = 0 (2)

zL̃z = z(xy − 2λz) = 0 (3)

λL̃λ = −λ(x + y + z
2
− 5) = 0 (4)

L̃x = yz − λ ≤ 0, L̃y = xz − λ ≤ 0, L̃z = xy − 2λz ≤ 0, L̃λ = −(x + y + z
2
− 5) ≥ 0 (5)

x ≥ 0, y ≥ 0, z ≥ 0, λ ≥ 0. (6)

Grading: 0.5% for each equality and inequality.
(c) From (1)-(3) and x, y, z > 0, we have

λ = yz = xz =
xy

2z
⇒ x = y = 2z2 and λ > 0. (2%) (7)

By (4) and (7), we have 5z2 = 5. So z = 1 by (6). (2%) Then x = y = 2 (1%) and λ = 1 ⋅ 2 = 2 (1%) by (7). So the
solution (x, y, z, λ) = (2,2,1,2).
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5. (12%) Find extreme values of the function f(x, y, z) = 6 − x2
− 2y2 − 2z2 subject to x + y = 1 and −y + 2z = 2.

(a) (4%) Suppose that (x, y, z, µ1, µ2) = (1,0,1, µ
∗

1, µ
∗

2) is a critical point of the Lagrangian function

L(x, y, z, µ1, µ2) = 6 − x
2
− 2y2 − 2z2 − µ1(x + y − 1) − µ2(−y + 2z − 2).

Find µ∗1, µ
∗

2.

(b) (4%) Write down the bordered Hessian matrix at (x, y, z, µ1, µ2) = (1,0,1, µ
∗

1, µ
∗

2).

(c) (4%) Determine whether f(1,0,1) is a local maximum, local minimum or neither on the constraint set by second
order conditions.

Solution:

(a) We compute that Lx = −2x − µ1, (0.5%) Ly = −4y − µ1 + µ2, (0.5%) Lz = −4z − 2µ2, (0.5%) Lµ1 = −(x + y − 1)
(0.5%) and Lµ2 = −(−y + 2z − 2) (0.5%). Since (1,0,1, µ∗1, µ

∗

2) is a critical point of L, we have Lx = −2 − µ
∗

1 = 0
Ly = −4(0) −µ

∗

1 +µ
∗

2 = 0, Lz = −4− 2µ
∗

2 = 0, Lµ1 = −(1+ 0− 1) = 0 and Lµ2 = −(−0+ 2(1) − 2) = 0. (1%) So µ∗1 = −2
and µ∗2 = −2. (0.5%)
(b) Let g1(x, y, z) = x + y and g2(x, y, z) = −y + 2z. Then the bordered Hessian matrix at (x, y, z, µ1, µ2) =

(1,0,1,−2,−2) is

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 0 g1x g1y g1z
0 0 g2x g2y g2z
g1x g2x Lxx Lxy Lxz

g1y g2y Lxy Lyy Lyz

g1z g2z Lxz Lyz Lzz

⎞
⎟
⎟
⎟
⎟
⎟
⎠

RRRRRRRRRRRRRRRRRRRRRRR(x,y,z,µ1,µ2)=(1,0,1,−2,−2)

(2%) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1 1 0
0 0 0 −1 2
1 0 −2 0 0
1 −1 0 −4 0
0 2 0 0 −4

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.(2%)

(c) In this problem, there are three variables and two constraints. So we consider the last 3-2 LPM of the
bordered Hessian matrix. (1%) Then

LPM5 =

RRRRRRRRRRRRRRRRRRRRRRR

0 0 1 1 0
0 0 0 −1 2
1 0 −2 0 0
1 −1 0 −4 0
0 2 0 0 −4

RRRRRRRRRRRRRRRRRRRRRRR

=

RRRRRRRRRRRRRRRRRR

0 0 −1 2
1 0 0 0
1 −1 −4 0
0 2 0 −4

RRRRRRRRRRRRRRRRRR

−

RRRRRRRRRRRRRRRRRR

0 0 0 2
1 0 −2 0
1 −1 0 0
0 2 0 4

RRRRRRRRRRRRRRRRRR

= −

RRRRRRRRRRRRR

1 0 0
1 −1 0
0 2 −4

RRRRRRRRRRRRR

− 2

RRRRRRRRRRRRR

1 0 0
1 −1 −4
0 2 0

RRRRRRRRRRRRR

+ 2

RRRRRRRRRRRRR

1 0 −2
1 −1 0
0 2 0

RRRRRRRRRRRRR

= −4 − 2(8) + 2(−4) = −28. (2%)

Since LPM5 has the same sign with (−1)3 = −1. Hence, the SOC implies that the given point is a local maximum.
(1%)
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6. (26%) We want to maximize f(x, y, z) = 2z2 + 2xy − 2xz − 2yz under the constraint x2
+ y2 + z2 = 1. The Lagrangian

function for this optimization problem is

L(x, y, z, µ) = 2z2 + 2xy − 2xz − 2yz − µ(x2
+ y2 + z2 − 1).

(a) (3%) Suppose that (x, y, z, µ) = (
1
√
3
,
1
√
3
,
1
√
3
, µ∗) is a solution of the first order conditions. Find µ∗.

(b) (7%) Write down the bordered Hessian matrix at (x, y, z, µ) = (
1
√
3
,
1
√
3
,
1
√
3
, µ∗). Then determine whether

f(
1
√
3
,
1
√
3
,
1
√
3
) is a local maximum, local minimum, or neither on the constraint set by second order conditions.

Suppose that (x∗, y∗, z∗, µ∗) is a solution of the first order conditions. Then we can show that v =
⎛
⎜
⎝

x∗

y∗

z∗

⎞
⎟
⎠

is an

eigenvector of A =
⎛
⎜
⎝

0 1 −1
1 0 −1
−1 −1 2

⎞
⎟
⎠
with eigenvalue µ∗.

(c) (9%) Find all eigenvalues and corresponding unit eigenvectors(eigenvectors with length 1) of A =
⎛
⎜
⎝

0 1 −1
1 0 −1
−1 −1 2

⎞
⎟
⎠
.

(d) (2%) Find the maximum value of f on x2
+ y2 + z2 = 1.

(e) (5%) Estimate the maximum value of 0.03x2
+ 2z2 + 2xy − 2xz − 2yz under the constraint x2

+ y2 + z2 = 1.02.

Solution:

(a)

First order conditions:
⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2y − 2z − 2µx = 0

2x − 2z − 2µy = 0

4z − 2x − 2y − 2µz = 0

x2
+ y2 + z2 = 1

By plugging in, we get µ∗ = 0.

(b)

The bordered Hessian is a 4 × 4 matrix. We need

Lxx = −2µ,Lxy = 2, Lxz = −2, Lyy = −2µ,Lyz = −2, Lzz = 4 − 2µ

The bordered Hessian (with x∗, y∗, z∗, µ∗ plugged in) is

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
2
√
3

2
√
3

2
√
3

2
√
3

0 2 −2

2
√
3

2 0 −2

2
√
3
−2 −2 4

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The second order condition in this case looks at LPM3 and LPM4. We can factor some positive constants out
before finding the LPM’s.

⎛
⎜
⎜
⎜
⎝

0 1 1 1
1 0 1 −1
1 1 0 −1
1 −1 −1 2

⎞
⎟
⎟
⎟
⎠

Use row operations to simplify a bit.

⎛
⎜
⎜
⎜
⎝

0 1 1 1
1 0 1 −1
0 0 −2 −1
0 0 −1 4

⎞
⎟
⎟
⎟
⎠

Hence LPM3 is 2 and LPM4 is 9, both positive. Local maximum and local minimum both require LPM4 to be
negative (match the sign of (−1)1 or (−1)3). Hence the point is a saddle.
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(c)

det(A − xI) = det
⎛
⎜
⎝

−x 1 −1
1 −x −1
−1 −1 2 − x

⎞
⎟
⎠

= 2x2
− x3

+ 1 + 1 + x + x − (2 − x) = −x3
+ 2x2

+ 3x = −x(x + 1)(x − 3)

The eigenvalues are −1,0,3. The corresponding eigenvectors:

⎛
⎜
⎝

1 1 −1
1 1 −1
−1 −1 3

⎞
⎟
⎠

⎛
⎜
⎝

x
y
z

⎞
⎟
⎠
=
⎛
⎜
⎝

0
0
0

⎞
⎟
⎠
⇒ x = t, y = −t, z = 0

⎛
⎜
⎝

0 1 −1
1 0 −1
−1 −1 2

⎞
⎟
⎠

⎛
⎜
⎝

x
y
z

⎞
⎟
⎠
=
⎛
⎜
⎝

0
0
0

⎞
⎟
⎠
⇒ x = t, y = t, z = t

⎛
⎜
⎝

−3 1 −1
1 −3 −1
−1 −1 −1

⎞
⎟
⎠

⎛
⎜
⎝

x
y
z

⎞
⎟
⎠
=
⎛
⎜
⎝

0
0
0

⎞
⎟
⎠
⇒ x = t, y = t, z = −2t

The unit eigenvectors are

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1
√
2
−1
√
2
0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
√
3
1
√
3
1
√
3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
√
6
1
√
6
−2
√
6

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(d)

Because the constraint set is closed and bounded, we can find the maximum value by simply plugging in the 3

solutions and compare. The maximum value of f occurs at x =
1
√
6
, y =

1
√
6
, z =

−2
√
6
and the value is 3.

(e)

The new Lagrangian function is

L(x, y, z, µ) = 0.03x2
+ 2z2 + 2xy − 2xz − 2yz − µ(x2

+ y2 + z2 − 1.02).

We can use two variables or one.

One variable:
L(x, y, z, µ;a) = 3ax2

+ 2z2 + 2xy − 2xz − 2yz − µ(x2
+ y2 + z2 − 1 − 2a).

Linear approximation at a = 0.01 is 3 + (0.01) (
∂L

∂a
) at the point x =

1
√
6
, y =

1
√
6
, z =

−2
√
6
, µ = 3.

3 + (0.01)(0.5 + 6) = 3.065.

Two variables:

L(x, y, z, µ;a1, a2) = a1x
2
+ 2z2 + 2xy − 2xz − 2yz − µ(x2

+ y2 + z2 − 1 − a2).

At the point La1 =
1

6
and La2 = 3. Hence

3 + (0.03)
1

6
+ (0.02)3 = 3.065.

Grading:

� (a) (2%) FOC (students do not need to list all of them, but must explain which one(s) are used), (1%)
µ-value.
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� (b) (4%) Bordered Hessian. (3%) Classify.

� The answer in (b) depends on the µ-value from (a). Students can get full credit as long as (b) is done
correctly with the value from (a). For non-zero µ-values, the student must show work so the grader can
see the conclusion of the SOC clearly.

� (c) (3%) for finding eigenvalues. (2%) each for the eigenvectors.

� (d) Student should check NDCQ here, but we won’t deduct points if they forget. (2%) for maximum value,
all or nothing.

� The answer in (d) depends on the answer in (c). Students can get full credit in (d) even if (c) is incorrect.

� (e) (2%) for writing the new Lagrangian. (3%) for using Envelope Theorem correctly.

� The answer in (e) depends on the answer in (d). Students can get full credit in (e) even if they just used
envelope theorem on the given point (which we know is a saddle, not max).

� In general, (-1%) for each minor mistake and (-2%) for each concept mistake. Subtract until there are no
points left in the problem.
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