1．$(18 \%)$
（a）Evaluate the following limits．
（i）$(6 \%) \lim _{x \rightarrow 0^{-}}\left(\sqrt{1+\frac{1}{x^{2}}}\right) \cdot \sin x$
（ii）$(6 \%) \lim _{x \rightarrow 0}(\cos x)^{\cot ^{2} x}$
（b）It is known that $g(x)$ is a function such that $g\left(\frac{\pi}{4}\right)=0$ and $g^{\prime}(x)=\tan x$ ．
（i）$(3 \%)$ Use a linearization to estimate the value of $g(0.26 \pi)$ ．
（ii）$(3 \%)$ Use $g^{\prime \prime}(x)$ to determine whether the estimate in（b）（i）is an overestimate or underestimate．

## Solution：

（a）（i）

$$
\lim _{x \rightarrow 0^{-}}\left(\sqrt{1+\frac{1}{x^{2}}}\right) \cdot \sin x=-\sqrt{\lim _{x \rightarrow 0^{-}} \frac{\left(1+x^{2}\right) \sin ^{2} x}{x^{2}}}=-1
$$

（a）（ii）

$$
\left.\lim _{x \rightarrow 0}(\cos x)^{\cot ^{2} x}=e^{\left(\lim _{x \rightarrow 0} \cot ^{2} x \ln (\cos x)\right.}\right)=e^{\left(\lim _{x \rightarrow 0} \frac{\ln (\cos x)}{\tan ^{2} x}\right)}
$$

Since

$$
\lim _{x \rightarrow 0} \ln (\cos x)=0 \quad \text { and } \quad \lim _{x \rightarrow 0} \tan ^{2} x=0
$$

Use l＇Hospital＇s Rule on $\frac{0}{0}$ form to get

$$
e^{\left(\lim _{x \rightarrow 0} \frac{\ln (\cos x)}{\tan ^{2} x}\right)}=e^{\left(\lim _{x \rightarrow 0} \frac{-\tan x}{2 \tan x \sec ^{2} x}\right)}=e^{-1 / 2}
$$

（b）（i）

$$
\begin{gathered}
L(x)=g\left(\frac{\pi}{4}\right)+g^{\prime}\left(\frac{\pi}{4}\right) \cdot\left(x-\frac{\pi}{4}\right) \\
L(0.26 \pi)=0+\tan \frac{\pi}{4} \cdot(0.26 \pi-0.25 \pi)=0.01 \pi
\end{gathered}
$$

（b）（ii）
We can find $g^{\prime \prime}(x)=\sec ^{2} x . g^{\prime \prime}\left(\frac{\pi}{4}\right)=2$ ．
Because the second derivative is positive between $0.25 \pi$ and $0.26 \pi$ ，the function is concave up between $0.25 \pi$ and $0.26 \pi$ and hence the linear approximation is an under－estimate．

## Grading：

（a）（i）
There are many methods for this problem but they are all pretty short，so students get $0 \%, 3 \%$ ，or $6 \%$ for wrong， incomplete，and correct，respectively．
（a）（ii）
There are a lot of steps in this l＇Hospital＇s Rule problem．We use a step－by－step grading scheme：students get $1 \%$ for each correct step toward the answer．
（b）（i）

Linearization is $2 \%$ and the estimate is $1 \%$. Students can/might get points for understanding the process even if the answer is wrong.
(b) (ii)

Another step-by-step situation where students must evaluate second derivative and explain what concave up means. $1 \%$ for each step toward the answer.
2. $(15 \%)$ Compute the following derivatives of implicit functions.
(a) $(7 \%)$ Given : $y^{x}+e^{x^{2}}=2 e$. Find $\frac{d y}{d x}$ at $(x, y)=(1, e)$.
(b) $(8 \%)$ Given $: \sin (x y)=\sin x+\sin y$. Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $(x, y)=(0,0)$.

## Solution:

(a) By implicit differentiation, we get

$$
\frac{d}{d x} e^{x \ln y}+e^{x^{2}} 2 x=0(2 \text { points })
$$

Therefore,

$$
y^{x}\left(\ln y+\frac{x}{y} y^{\prime}\right)+e^{x^{2}} 2 x=0(3 \text { points }) .
$$

Plug in $(x, y)=(1, e)$ to get $e\left(\ln e+\frac{1}{e} y^{\prime}\right)+2 e=0$. So, $\left.y^{\prime}\right|_{(1, e)}=-3 e(2$ points $)$.
(b) By implicit differentiation, we get

$$
\begin{equation*}
\cos (x y)\left(y+x y^{\prime}\right)=\cos x+y^{\prime} \cos y(2 \text { points }) \tag{1}
\end{equation*}
$$

Using implicit differentiation again, we get

$$
\begin{equation*}
-\sin (x y)\left(y+x y^{\prime}\right)^{2}+\cos (x y)\left(2 y^{\prime}+x y^{\prime \prime}\right)=-\sin x-\left(y^{\prime}\right)^{2} \sin y+y^{\prime \prime} \cos y \text { (2 points). } \tag{2}
\end{equation*}
$$

Plug in $(x, y)=(0,0)$ in formula (1) to get $\left.y^{\prime}\right|_{(0,0)}=-1$ (2 points). Plug in $(x, y)=(0,0)$ in formula (2) to get $\left.y^{\prime \prime}\right|_{(0,0)}=\left.2 y^{\prime}\right|_{(0,0)}=-2$ (2 points $)$.
3. ( $10 \%$ ) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function that satisfies

$$
f(x+y)=e^{-2 y} f(x)+e^{-2 x} f(y) \text { for all real numbers } x, y .
$$

(a) $(2 \%)$ Find $f(0)$.
(b) Suppose in addition that $\lim _{x \rightarrow 0} \frac{f(x)}{x}=3$.
(i) $(3 \%)$ Find $f^{\prime}(0)$.
(ii) $(5 \%)$ If $f(a)=b$, find $f^{\prime}(a)$ in terms of $a$ and $b$.

## Solution:

(a) Put $\underbrace{x=y=0}$. Then we have $f(0)=f(0)+f(0) \Rightarrow \underbrace{f(0)=0}$.


Marking Scheme for Q3a.
$1 \%$ for putting $x=y=0$
$1 \%$ for the answer
(b) (i) $f^{\prime}(0)=\underbrace{\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}}_{2 \%}=\lim _{h \rightarrow 0} \frac{f(h)}{h}=\underbrace{3}_{1 \%}$

## Marking Scheme for Q3b(i).

$2 \%$ for the definition of $f^{\prime}(0)$ as a limit
$1 \%$ for the answer
(i) Just writing $f^{\prime}(0)=3$ without any explanation will receive $1 \%$ only.
(ii) Differentiating the given equation/using L'Hospital's rule are invalid because $f$ is not known to be differentiable.
(ii) $f^{\prime}(a)=\underbrace{\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}}_{1 \%}=\underbrace{\lim _{h \rightarrow 0} \frac{e^{-2 a} f(h)+e^{-2 h} f(a)-f(a)}{h}}_{1 \%}=\lim _{h \rightarrow 0} e^{-2 a} \frac{f(h)}{h}+f(a) \frac{e^{-2 h}-1}{h}$ $=e^{-2 a} \cdot 3+f(a) \underbrace{(-2)}_{2 \%}=\underbrace{3 e^{-2 a}-2 b}_{1 \%}$

## Marking Scheme for Q3b(ii).

$1 \%$ for the definition of $f^{\prime}(a)$ as a limit
$1 \%$ for applying the given functional equation
$2 \%$ for computing $\lim _{h \rightarrow 0} \frac{e^{-2 h}-1}{h}=-2$ (partial credits available)
$1 \%$ for the answer
Again, differentiating the given equation/ using L'Hospital's rule are not valid unless the candidate has established the differentiability of $f$ (but this is essentially the point of this question).
4. (13\%) Figure 1 shows a Hydraulic Scissor Lift for lifting workers to work at various levels and its cross-section. It is known that the two shafts $P Q$ and $R S$ have length 5 m and are hinged at their mid-points. Suppose at time $t \mathrm{~s}$, $P R=x \mathrm{~m}$ and the height of the top platform from the ground is $h \mathrm{~m}$. The work platform is lifted upward by moving the shafts such that both $P R$ and $S Q$ decrease at a constant rate of $0.5 \mathrm{~m} / \mathrm{s}$.


Figure 1. Hydraulic Scissor Lift
(a) $(10 \%)$ Find $\frac{d h}{d t}$ and $\frac{d^{2} h}{d t^{2}}$ in terms of $x$.
(b) $(3 \%)$ According to the government safety regulation, the elevating speed of the platform should not exceed 1 $\mathrm{m} / \mathrm{s}$. Find the range of values of $x$ that complies with this regulation.

## Solution:

(a) Differentiate $\underbrace{x^{2}+h^{2}=25}_{2 \%}$ with respect to $t$ yields $\underbrace{2 x \frac{d x}{d t}+2 h \frac{d h}{d t}=0}_{2 \%}$. Putting $\underbrace{\frac{d x}{d t}=-0.5}_{1 \%}$ and $h=\sqrt{25-x^{2}}$ yields

$$
-x+2 \sqrt{25-x^{2}} \cdot \frac{d h}{d t}=0 \Longrightarrow \frac{d h}{d t}=\underbrace{\frac{x}{2 \sqrt{25-x^{2}}}}_{1 \%}
$$

Differentiate this again with respect to $t$,

$$
\begin{align*}
\frac{d^{2} h}{d t^{2}} & =\frac{\frac{d x}{d t} \sqrt{25-x^{2}}-x \cdot \frac{d}{d x} \sqrt{25-x^{2}}}{2\left(25-x^{2}\right)} \\
& =\frac{\frac{d x}{d t} \sqrt{25-x^{2}}-x \cdot \frac{-x}{\sqrt{25-x^{2}}} \cdot \frac{d x}{d t}}{2\left(25-x^{2}\right)} \\
& =-\frac{1}{2} \frac{\sqrt{25-x^{2}}-x \cdot \frac{-x}{\sqrt{25-x^{2}}}}{2\left(25-x^{2}\right)} \\
& =-\frac{1}{4} \cdot \frac{25}{\left(25-x^{2}\right)^{3 / 2}} \quad(1 \%)
\end{align*}
$$

## Marking Scheme for Q4(a).

## First derivative

$2 \%$ for relating $x$ and $h$
$2 \%$ for correct implicit differentiation (partial credits available)
$1 \%$ for writing $\frac{d x}{d t}=-0.5$
$1 \%$ for the answer
Second derivative
$1 \%$ for quotient rule
$2 \%$ for correct implicit differentiation (partial credits available)
$1 \%$ for the answer
(b) Note $x \geq 0$ by default. Set $\underbrace{\frac{d h}{d t} \leq 1}_{1 \%}$. We have $\frac{x}{2 \sqrt{25-x^{2}}} \leq 1$. Solving gives $\underbrace{x \leq \sqrt{20}}_{2 \%}$. Therefore, when the lift is operating for $0 \leq x \leq \sqrt{20}$, it complies with the government regulation.

```
Marking Scheme for Q4(b).
1% for setting }\frac{dh}{dt}\leq
2% for the correct range of }x\mathrm{ .
```

5. $(12 \%)$
(a) (6\%) Prove that $|\sin b-\sin a| \leq|b-a|$ for all real numbers $a$ and $b$.
(b) $(6 \%)$ Use (a) to compute $\lim _{x \rightarrow \infty}(\sin \sqrt{x+\sqrt{x+\sqrt{x}}}-\sin \sqrt{x+\sqrt{x}})$.

## Solution:

(a) If $b=a$, both sides are zero, hence the inequality is valid. The case $a<b$ is equivalent to the case $b>a$, so we may assume $b>a$ without loss of generality. By application of Mean Value Theorem to $\sin x$, we find that

$$
\frac{\sin b-\sin a}{b-a}=\cos c
$$

for some $c \in(a, b)$. Since $\left|\frac{\sin b-\sin a}{b-a}\right|=|\cos c| \leq 1$, hence $|\sin b-\sin a| \leq|b-a|$.

- Totally $4 \%$ for deriving the fact $\frac{\sin b-\sin a}{b-a}=\cos c$ for some $c \in(a, b)$ with explanation. If one uses MVT in the form $\sin b-\sin a=(b-a) \cos c$, dividing the case $a=b$ may be omitted.
- $1 \%$ for examining the case $b=a$ if one uses the quotient form of MVT.
- $1 \%$ for mentioning "by Mean Value Theorem" or "by MVT"
$-2 \%$ for arriving at the fact $\frac{\sin b-\sin a}{b-a}=\cos c$ for some $c \in(a, b)$.
- Totally $2 \%$ for obtaining the inequality $|\sin b-\sin a| \leq|b-a|$.
$-1 \%$ for using the fact $|\cos c| \leq 1$ or $-1 \leq \cos c \leq 1$.
(b) For $x>0$,

$$
|\sin \sqrt{x+\sqrt{x+\sqrt{x}}}-\sin \sqrt{x+\sqrt{x}}| \leq|\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x+\sqrt{x}}| \quad(\text { by } \quad \text { (a) })
$$

$$
=\frac{|(\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x+\sqrt{x}})(\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x+\sqrt{x}})|}{|\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x+\sqrt{x}}|} \quad \text { (by rationalization) }
$$

$$
=\frac{|\sqrt{x+\sqrt{x}}-\sqrt{x}|}{|\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x+\sqrt{x}}|} \quad \text { (by simplification) }
$$

$$
=\frac{|(\sqrt{x+\sqrt{x}}-\sqrt{x})(\sqrt{x+\sqrt{x}}+\sqrt{x})|}{|\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x+\sqrt{x}}||\sqrt{x+\sqrt{x}}+\sqrt{x}|} \quad \text { (by rationalization) }
$$

$$
=\frac{|\sqrt{x}|}{|\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x+\sqrt{x}}||\sqrt{x+\sqrt{x}}+\sqrt{x}|} \quad \text { (by simplification) }
$$

$$
\leq \frac{|\sqrt{x}|}{|\sqrt{x}||2 \sqrt{x}|}=\frac{1}{4 \sqrt{x}}
$$

Hence, by Squeeze Theorem,

$$
\lim _{x \rightarrow \infty}(\sin \sqrt{x+\sqrt{x+\sqrt{x}}}-\sin \sqrt{x+\sqrt{x}})=0 \quad(1 \mathrm{pt})
$$

- $1 \%$ for the application of part (a) to derive

$$
|\sin \sqrt{x+\sqrt{x+\sqrt{x}}}-\sin \sqrt{x+\sqrt{x}}| \leq|\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x+\sqrt{x}}|
$$

- Totally $3 \%$ for two-step rationalization with simiplification:

$$
\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x+\sqrt{x}}=\frac{\sqrt{x}}{(\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x+\sqrt{x}})(\sqrt{x+\sqrt{x}}+\sqrt{x})}
$$

- $1 \%$ for the first rationalization (even for trial).
$-2 \%$ for arriving at the simplified form $\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x+\sqrt{x}}=\frac{\sqrt{x+\sqrt{x}}-\sqrt{x}}{\sqrt{x+\sqrt{x+\sqrt{x}}+\sqrt{x+\sqrt{x}}}}$ after the first rationalization.
- $1 \%$ for another rationalization and correct simplification

$$
\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x+\sqrt{x}}=\frac{\sqrt{x}}{(\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x+\sqrt{x}})(\sqrt{x+\sqrt{x}}+\sqrt{x})} .
$$

- Totally $2 \%$ for correctly deriving at the conclusion $\lim _{x \rightarrow \infty}(\sin \sqrt{x+\sqrt{x+\sqrt{x}}}-\sin \sqrt{x+\sqrt{x}})=0$.
$-1 \%$ for the application of Squeeze Theorem.
$-1 \%$ finding its limit of $\frac{\sqrt{x}}{(\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x+\sqrt{x}})(\sqrt{x+\sqrt{x}}+\sqrt{x})}$ as $x \rightarrow \infty$ or for bounding $\frac{\sqrt{x}}{(\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x+\sqrt{x}})(\sqrt{x+\sqrt{x}}+\sqrt{x})}$ by a quantity that goes to zero as $x \rightarrow \infty$.

6. $(20 \%)$ Consider the function $f(x)=\ln \left(x^{2}+1\right)-2 \ln (x)+4 \tan ^{-1}(x)-4 x$ for $x>0$.
(a) $(2 \%)$ Find the vertical asymptote of $y=f(x)$.
(b) $(6 \%)$ Find $\lim _{x \rightarrow \infty}(f(x)+4 x)$ and hence find the slant asymptote of $y=f(x)$.
(c) $(4 \%)$ Find $f^{\prime}(x)$. Write down the interval(s) of increase and interval(s) of decrease of $y=f(x)$.
(d) $(4 \%)$ Given $f^{\prime \prime}(x)=\frac{-2(x-1)\left(4 x^{2}+x+1\right)}{x^{2}\left(x^{2}+1\right)^{2}}$. Determine the concavity of $y=f(x)$ and find (if any) point(s) of inflection.
(e) (4\%) Sketch the graph of $y=f(x)$. Indicate on your sketch (if any) the local extrema, inflection point(s) and asymptote(s).

## Solution:

(a) Since $\lim _{x \rightarrow 0^{-}} \ln x=-\infty$ and $\lim _{x \rightarrow 0^{-}} \ln \left(x^{2}+1\right)+4 \tan ^{-1} x-4 x=0$, we know that $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \ln \left(x^{2}+1\right)+$ $4 \tan ^{-1} x-4 x-2 \ln x=\infty$. Hence $x=0$ is a vertical asymptote.
For all $a>0, \lim _{x \rightarrow a} f(x)=f(a) \neq \pm \infty$. Hence $x=a$ is not a vertical asymptote for all $a>0$.
( 1 pt for $\lim _{x \rightarrow 0^{+}} f(x)=\infty .1 \mathrm{pt}$ for $x=0$ is the vertical asymptote.)
(b)

$$
\begin{aligned}
\lim _{x \rightarrow \infty} f(x)+4 x & =\lim _{x \rightarrow \infty} \ln \left(x^{2}+1\right)-2 \ln x+4 \tan ^{-1} x \\
& =\lim _{x \rightarrow \infty} \ln \left(\frac{x^{2}+1}{x^{2}}\right)+4 \tan ^{-1} x\left(1 \mathrm{pt} \text { for combining } \ln \left(x^{2}+1\right) \text { and }-2 \ln x .\right) \\
& =\ln \left(\lim _{x \rightarrow \infty} \frac{x^{2}+1}{x^{2}}\right)+4 \lim _{x \rightarrow \infty} \tan ^{-1} x \\
& =\ln 1+4 \times \frac{\pi}{2}=2 \pi \\
& \left(2 \text { pts for } \lim _{x \rightarrow \infty} \ln \left(\frac{x^{2}+1}{x^{2}}\right) \cdot 1 \text { pt for } \lim _{x \rightarrow \infty} \tan ^{-1} x=\frac{\pi}{2} .\right)
\end{aligned}
$$

Hence $\lim _{x \rightarrow \infty} f(x)+4 x-2 \pi=\lim _{x \rightarrow \infty} f(x)-(-4 x+2 \pi)=0$ which means that $y=-4 x+2 \pi$ is the slant asymptote. ( 2 pts for slant asymptotes $y=-4 x+2 \pi$ )
(c)

$$
f^{\prime}(x)=\frac{2 x}{x^{2}+1}-\frac{2}{x}+\frac{4}{x^{2}+1}-4=\frac{2 x^{2}-2\left(x^{2}+1\right)+4 x-4 x^{3}-4 x}{x\left(x^{2}+1\right)}=\frac{-4 x^{3}-2}{x\left(x^{2}+1\right)}=\frac{-4\left(x^{3}+\frac{1}{2}\right)}{x\left(x^{2}+1\right)}
$$

(1 pt for differentiating $\ln \left(x^{2}+1\right)$ and $\ln (x) .1 \mathrm{pt}$ for differentiating $\tan ^{-1} x$.)
For $x>0, f^{\prime}(x)<0$. ( 1 pt for determining the sign of $f^{\prime}(x)$.)
Hence $f(x)$ is decreasing on $(0, \infty)$. (1 pt)
(d) $f^{\prime \prime}=\frac{-2(x-1)\left(4 x^{2}+x+1\right)}{x^{2}\left(x^{2}+1\right)^{2}}$

Because $4 x^{2}+x+1>0, x^{2} \geq 0,\left(x^{2}+1\right)^{2}>0$ for all $x \in \mathbb{R}$, we conclude that $f^{\prime \prime}(x)>0$ for $x \in(0,1)$ and $f^{\prime \prime}(x)<0$ for $x \in(1, \infty)$.
Hence $y=f(x)$ is concave upward on $(0,1)$ and is concave downward on $(1, \infty)$.
$(1, f(1))=(1, \ln 2+\pi-4)$ is the point of inflection.
(1 pt for determining the correct partition $(0,1),(1, \infty)$.
1 pt for the concavity on $(0,1)$.
1 pt for the concavity on $(1, \infty)$.
0.5 pt for the $x$-coordinate of the inflection point.
0.5 pt for the $y$-coordinate of the inflection point.)
(e) 0.5 pt for $\lim _{x \rightarrow 0^{+}} f(x)=\infty .0 .5 \mathrm{pt}$ for the inflection point. 1 pt for the slant asymptote, 1 pt for the graph on $(0,1)$, decreasing and concave upward. 1 pt for the graph on $(1, \infty)$, decreasing and concave downward.

7. ( $12 \%$ ) Figure 2 below shows the intersection of two roads with the same width of 2 m . We want to construct 'Y-shaped' pavements (where $\overline{O B}=\overline{O C}$ ) as dotted lines shown below. Let $\angle B O C=2 \theta$ with $\frac{\pi}{6} \leq \theta \leq \frac{\pi}{2}$.


Figure 2.
What is the value of $\theta$ that minimizes the total length of pavements, that is, to minimize $\overline{O A}+\overline{O B}+\overline{O C}$ ?

## Solution:

(2 points for expressing the quantities in terms of the notations) Note that $\overline{O B}=\overline{O C}=\csc \theta$ and $\overline{O A}=2-\cot \theta$. Then the total length of pavements is

$$
f(\theta)=2 \csc \theta+(2-\cot \theta)
$$

(1 point) Taking derivative, we have

$$
(4 \text { points* }) f^{\prime}(\theta)=-2 \csc \theta \cot \theta+\csc ^{2} \theta=-\csc ^{2} \theta(2 \cos \theta-1)
$$

*2 points for derivative of csc and 2 points for derivative of cot. If student tried using quotient rule to find their derivatives, at least 1 point.
(1 point) Thus the critical number of $f(\theta)$ is when $\cos \theta=\frac{1}{2}$, that is $\theta=\frac{\pi}{3}$.
Check $f(\pi / 3)$ is the absolute minimum: (4 points)
Method 1. (1 point for mentioning or trying to compute the three values, 2 points for computing correctly, 1 point for comparing with these values with some reason.)
It suffices to compute the following values (of the critical numbers and the endpoints of the interval):

1. $f(\pi / 6)=2 \times 2+2-\sqrt{3}=6-\sqrt{3}>6-\sqrt{4}=4$.
2. $f(\pi / 3)=2 \times \frac{2}{\sqrt{3}}+2-\frac{1}{\sqrt{3}}=2+\sqrt{3}<2+\sqrt{4}=4$.
3. $f(\pi / 2)=2 \times 1+2-0=4$

Since $f(\pi / 3)$ is the smallest among them, it is the absolute minimum in the interval $[\pi / 6, \pi / 2]$.
Method 2. (1 point for trying using monotonicity test*, 1 point for correct sign in each subinterval, 1 point for correctly using monotonicity test, 1 point for correct conclusion, not necessarily correct answer.)
Note that $f^{\prime}(\theta)$ changes from negative to positive. By the monotonicity test, $f$ is decreasing in the interval $[\pi / 6, \pi / 3]$ and increasing in the interval $[\pi / 3, \pi / 2]$. Thus, $f(\pi / 3)$ is the absolute minimum in the interval $[\pi / 6, \pi / 2]$.
**If student only tried to use the first derivative test, then 2 points at most.

