1. (12%) Evaluate the following limits.

(a) (6%)
$$\lim_{x \to -\infty} x \cdot \sin \frac{1}{\sqrt{4x^2 + 1}}$$
 (b) (6%) $\lim_{x \to 0^+} \left(\frac{2^x + 3^x + 5^x}{3}\right)^{\frac{1}{x}}$

Solution:
(a)
$$\lim_{x \to \infty} x \cdot \sin \frac{1}{\sqrt{4x^2 + 1}} = -\lim_{x \to \infty} x \cdot \sin \frac{1}{\sqrt{4x^2 + 1}} \stackrel{\text{(b)}}{\Rightarrow} 0 \cdot \infty \quad \nabla \mathbb{E}^{\underline{2}}$$

$$(A_{a} = -\lim_{x \to \infty} \frac{x}{\csc \frac{1}{\sqrt{4x^2 + 1}}} \quad (\frac{\infty}{\infty}) \quad \overline{\mathbf{x}} = -\lim_{x \to \infty} \frac{\sin \frac{1}{\sqrt{4x^2 + 1}}}{\frac{1}{x}} \quad (\frac{0}{0})$$

$$\overline{D}_{a} \stackrel{\text{(i)}}{\Rightarrow} (1) \quad \text{Apply L'Hospital's rule, } \stackrel{\text{(i)}}{\Rightarrow} \stackrel{\text{(i)}$$

2. (10%) Let
$$f(x) = \ln\left(\frac{(x+1)^2}{x^2 - x + 1}\right)$$
 and $g(x) = \tan^{-1}\left(\frac{2x-1}{\sqrt{3}}\right)$.
(a) (8%) Find $f'(x)$ and $g'(x)$.

(b) (2%) Find two integers m and n such that $\frac{d}{dx}(f(x) + \sqrt{mg(x)}) = \frac{n}{x^3 + 1}$.

Solution:
(a)
$$\frac{d}{dx}f = \frac{d}{dx}\ln\left(\frac{(x+1)^2}{x^2-x+1}\right) = \frac{2}{x+1} - \frac{2x-1}{x^2-x+1}, x \neq -1$$

 $\hat{\Xi}\hat{\Xi}: \ln(x+1)^2 = 2\ln|x+1|.$ $\hat{\Xi}\Box\hat{\Xi}: 2\ln(x+1), \hat{\Xi}\Box\hat{\Sigma}$
 $\frac{d}{dx}g = \frac{d}{dx}\tan^{-1}\left(\frac{2x-1}{\sqrt{3}}\right) = \frac{\frac{2}{\sqrt{3}}}{1+\left(\frac{2x-1}{\sqrt{3}}\right)^2} = \frac{2\sqrt{3}}{4x^2-4x+4}$
(b) $\frac{d}{dx}(f+\sqrt{m}g) = \frac{n}{x^3+1} = \frac{-3x+3}{x^3+1} + \frac{\sqrt{m}(\frac{\sqrt{3}}{2})(x+1)}{x^3+1}$
 $\frac{\sqrt{3}}{2}\sqrt{m} = 3, 3m = 36, m = 12$
 $3+\sqrt{12}\cdot\frac{\sqrt{3}}{2} = 3+\frac{6}{2} = 6 = n$

3. (12%) Figure 1 below shows the curve given by $2(x^2 + y^2)^2 = 25(x^2 - y^2)$ for $(x, y) \neq (0, 0)$.

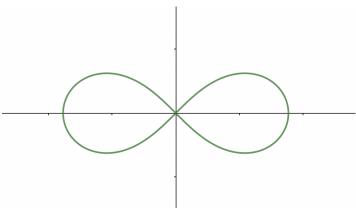


Figure 1.

Find the highest and the lowest points on the curve (that is, the points with, respectively, the largest and the smallest *y*-coordinates).

Solution:

The curve reaches its highest and lowest points when the derivative y' of y with respect to x is zero. To find y', take the implicit differentiation $4(x^2 + y^2)(2x + 2yy') = 25(2x - 2yy'), \qquad (1)$ and one obtains $y' = -\frac{x(4x^2 + 4y^2 - 25)}{y(4x^2 + 4y^2 + 25)}. \qquad (2)$ Thus y' = 0 if and only if $x^2 + y^2 = \frac{25}{4}. \qquad (3)$

In this case, the starting equation gives $x^2 - y^2 = 25/8$. Together with (3), one finds $x^2 = 75/16$, $y^2 = 25/16$. Therefore the curve has horizontal tangents at the four points $(\pm 5\sqrt{3}/4, \pm 5/4)$. One obtains that the highest and the lowest points are respectively

$$\left(\pm\frac{5\sqrt{3}}{4},\frac{5}{4}\right)$$
 and $\left(\pm\frac{5\sqrt{3}}{4},-\frac{5}{4}\right)$. (4)

Correct implicit differentiation (1) and (2): +6

Condition for horizontal tangent (3): +3

Correct extreme values (4): +3

- 4. (16%) Let $f(x) = x + e^{2(x-1)}$.
 - (a) (2%) Prove that f(x) is a one-to-one function.
 - (b) Let $g(x) = f^{-1}(x)$ be the inverse function of f(x).
 - (i) (5%) Find g(2) and g'(2).
 - (ii) (5%) Prove that g''(x) < 0 for all $x \in \mathbb{R}$.
 - (iii) (4%) Write down the linearization L(x) of g(x) at x = 2. Hence determine whether g(2.1) or L(2.1) is larger.

Solution:

(a) (Sol 1):

Because $f'(x) = 1 + 2e^{2(x-1)} > 1 > 0$ for all $x \in \mathbb{R}$, we conclude that f(x) is increasing on \mathbb{R} . Hence f(x) is one-to-one.

(Sol 2):

Because $f'(x) = 1 + 2e^{2(x-1)} \neq 0$ for all $x \in \mathbb{R}$, by Rolle's Theorem we know that f(x) is one-to-one. (1 pt for correct f'(x). 1 pt for applying the increasing test or Rolle's Theorem.)

(b) (i) Since
$$f(1) = 1 + e^0 = 2$$
, we know that $f^{-1}(2) = g(2) = 1$. (1 pt
 $f(g(x)) = x \xrightarrow{\frac{d}{dx}} f'(g(x)) \cdot g'(x) = 1$
Therefore, $g'(x) = \frac{1}{f'(g(x))}$ (2 pts)
For $x = 2$, $g'(2) = \frac{1}{f'(g(2))} = \frac{1}{f'(1)}$ (1 pt)
 $\therefore f'(1) = 1 + 2 \cdot e^{2(1-1)} = 1 + 2 \cdot e^0 = 3$
 $\therefore g'(2) = \frac{1}{3}$ (1 pt)

(ii)
$$f(g(x)) = x \xrightarrow{\frac{d}{dx}} f'(g(x)) \cdot g'(x) = 1 \xrightarrow{\frac{d}{dx}} f''(g(x)) \cdot (g'(x))^2 + f'(g(x)) \cdot g''(x) = 0$$

Hence $g''(x) = -\frac{1}{f'(g(x))} \cdot f''(g(x)) \cdot (g'(x))^2$.
Or differentiate $g'(x) = -\frac{1}{f'(g(x))} \cdot g''(x) = 0$

Or differentiate $g'(x) = \frac{1}{f'(g(x))}$ and we obtain

$$g''(x) = \frac{d}{dx} \left(\frac{1}{f'(g(x))} \right) = -\frac{f''(g(x)) \cdot g'(x)}{(f'(g(x)))^2} = -\frac{f''(g(x))}{(f'(g(x)))^3}.$$

(1 pt for trying differentiating $f'(g(x)) \cdot g'(x) = 1$ or $g'(x) = \frac{1}{f'(g(x))}$. 1 pt for correct differential rule. 1 pt for $g''(x) = -\frac{f''(g(x))}{f'(g(x))} \cdot (g'(x))^2$ or $g''(x) = -\frac{f''(g(x))}{(f'(g(x)))^3}$.) $\therefore f'(x) = 1 + 2e^{2(x-1)} > 0, g'(x) = \frac{1}{f'(g(x))} > 0 f''(x) = 4e^{2(x-1)} > 0$ for all $x \in \mathbb{R}$ (1 pt for f'') $\therefore g''(x) = -\frac{f''(g(x))}{f'(g(x))}(g'(x))^2 = -\frac{f''(g(x))}{(f'(g(x)))^3} < 0$ for all x in the domain of g(x). (1 pt for determining g''(x) < 0)

(iii) The linearization of g(x) at x = 2 is $L(x) = \underbrace{g(2) + g'(2)(x-2)}_{(1 \text{ pt})} = \underbrace{1 + \frac{1}{3}(x-2)}_{(1 \text{ pt})}$

Because g''(x) < 0, we know that g(x) is concave downward. Hence the graph of g(x) lies under any tangent line of y = y(x). Therefore, g(2.1) < L(2.1). (2 pts).

If $\begin{cases} f'' > 0 \\ f' > 0 \\ f, g 對稱 y = x \end{cases} \Rightarrow g'' < 0 \text{ can have 4M.} \\ If \begin{cases} f'' > 0 \\ f, g 對稱 y = x \end{cases} \Rightarrow g'' < 0 \text{ is incorrect (consider } e^{-x}), \text{ have 1M from } f''. \end{cases}$

5. (14%) (a) (6%) Use Mean Value Theorem to prove that for any 0 < a < b,

$$\frac{\sqrt{b}-\sqrt{a}}{1+b} \le \tan^{-1}(\sqrt{b}) - \tan^{-1}(\sqrt{a}) \le \frac{\sqrt{b}-\sqrt{a}}{1+a}.$$

(b) (8%) Suppose c is a constant such that the limit

$$L = \lim_{x \to \infty} \frac{\tan^{-1}(\sqrt{x^3 + 1}) - \tan^{-1}(\sqrt{x^3 - 1})}{x^c}$$
 is non-zero.

Find c and L.

Solution:

(a) Solution (1) Use usual MVT.
(1M) f(x) = arctan(x) is differentiable everywhere, Take any 0 < x < y and apply MVT to f over [x, y], we have

$$\underbrace{\tan^{-1}(y) - \tan^{-1}(x) = \frac{1}{1 + c^2}(y - x)}_{(2M)} \quad \text{for some } \underbrace{x < c < y}_{(1M)}.$$

Since
$$x < c < y$$
, we have $\underbrace{\frac{1}{1+y^2} < \frac{1}{1+c^2} < \frac{1}{1+x^2}}_{(1M)}$. Hence, $\frac{y-x}{1+y^2} < \tan^{-1}(y) - \tan^{-1}(x) < \frac{y-x}{1+x^2}$.

Now put $x = \sqrt{a}$ and $y = \sqrt{b}$ (1M), we have

$$\frac{\sqrt{b} - \sqrt{a}}{1 + b} < \tan^{-1}(\sqrt{b}) - \tan^{-1}(\sqrt{a}) < \frac{\sqrt{b} - \sqrt{a}}{1 + a}$$

Solution (2) Use Cauchy's MVT.

(1M) $f(x) = \arctan(\sqrt{x})$ and $g(x) = \sqrt{x}$ are differentiable for x > 0. Apply Cauchy's MVT to f and g over [a, b], we have

$$\underbrace{\frac{\tan^{-1}(\sqrt{b}) - \tan^{-1}(\sqrt{a})}{\sqrt{b} - \sqrt{a}}}_{(2M)} = \frac{f'(c)}{g'(c)} \quad \text{for some } \underbrace{a < c < b}_{(1M)}$$

Now, $\frac{f'(c)}{g'(c)} = \frac{1}{1+c}$ (1M) and since a < c < b, we have $\frac{1}{1+b} < \frac{1}{1+c} < \frac{1}{1+a}$ (1M). Hence,

$$\frac{1}{1+b} < \frac{\tan^{-1}(\sqrt{b}) - \tan^{-1}(\sqrt{a})}{\sqrt{b} - \sqrt{a}} < \frac{1}{1+a}$$

and the desired inequality follows.

Marking Scheme for Q5(a).

- 1M for the hypothesis in applying Mean Value Theorem
- $2\mathrm{M}{+}1\mathrm{M}$ for the statement of Mean Value Theorem
- 1M for setting up correct inequalities (given that the derivative needs to be right)

1M for putting $x = \sqrt{a}$ and $y = \sqrt{b}$ (in Sol 1) or for computing f'(c)/g'(c) (in Sol 2).

Remarks.

The desired inequality *cannot* be obtained by applying MVT to $f(x) = \tan^{-1}(\sqrt{x})$. Any such candidates can receive at most 2M.

(b) (1M) Take
$$a = x^3 - 1$$
 and $b = x^3 + 1$ in (a), we have

$$\frac{\sqrt{x^3+1}-\sqrt{x^3-1}}{x^3+2} \le \tan^{-1}(\sqrt{x^3+1}) - \tan^{-1}(\sqrt{x^3-1}) \le \frac{\sqrt{x^3+1}-\sqrt{x^3-1}}{x^3}$$

(2M) Rationalize the two ends, we have

$$\frac{2}{(x^3+2)(\sqrt{x^3+1}+\sqrt{x^3-1})} \le \tan^{-1}(\sqrt{x^3+1}) - \tan^{-1}(\sqrt{x^3-1}) \le \frac{2}{x^3(\sqrt{x^3+1}+\sqrt{x^3-1})}$$

(1M) Multiply every term by $x^{4.5}$ (or equivalently divide by $x^{-4.5}$), we have

$$\frac{2x^{4.5}}{(x^3+2)(\sqrt{x^3+1}+\sqrt{x^3-1})} \le \frac{\tan^{-1}(\sqrt{x^3+1})-\tan^{-1}(\sqrt{x^3-1})}{x^{-4.5}} \le \frac{2x^{4.5}}{x^3(\sqrt{x^3+1}+\sqrt{x^3-1})}$$

Now we compute (2M)

•
$$\lim_{x \to \infty} \frac{2x^{4.5}}{x^3(\sqrt{x^3 + 1} + \sqrt{x^3 - 1})} = \lim_{x \to \infty} \frac{2}{\sqrt{1 + \frac{1}{x^3}} + \sqrt{1 - \frac{1}{x^3}}} = \frac{2}{2} = 1,$$

•
$$\lim_{x \to \infty} \frac{2x^{4.5}}{(x^3 + 2)(\sqrt{x^3 + 1} + \sqrt{x^3 - 1})} = \lim_{x \to \infty} \frac{2}{(1 + \frac{2}{x^3})\sqrt{1 + \frac{1}{x^3}} + \sqrt{1 - \frac{1}{x^3}}} = \frac{2}{1 \cdot 2} = 1.$$

(1M) By Squeeze Theorem, we have
$$\lim_{x \to \infty} \frac{\tan^{-1}(\sqrt{x^3 + 1}) - \tan^{-1}(\sqrt{x^3 - 1})}{x^{-4.5}} = 1.$$

(1M) So c = -4.5 and L = 1.

Marking Scheme for Q5(b).

1M for applying the inequality in 5(a)

2M for rationalization

1M for choosing an appropriate x^k

2M for computing at least one of limits at the two end correctly, with justification.

1M for applying Squeeze Theorem

1M for correct answers

- 6. (22%) Consider the function $f(x) = xe^{\frac{1}{x}}$ for $x \neq 0$.
 - (a) (2%) Find $\lim_{x\to 0^+} f(x)$ and $\lim_{x\to 0^-} f(x)$.
 - (b) (2%) Find all the vertical asymptotes of y = f(x).
 - (c) (6%) Find the slant asymptote(s) of y = f(x).
 - (d) (4%) Find f'(x). Write down the interval(s) of increase and interval(s) of decrease of y = f(x).
 - (e) (4%) Find f''(x). Write down the interval(s) on which y = f(x) is concave upward and the interval(s) on which y = f(x) is concave downward.
 - (f) (4%) Sketch the graph of y = f(x). Indicate on your sketch (if any) the local extrema, inflection points and asymptotes of the curve.

Solution:

- (a) $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x e^{\frac{1}{x}} \frac{\det}{y = \frac{1}{x}} \lim_{y \to \infty} \frac{e^y}{y} = \lim_{y \to \infty} \frac{e^y}{1} = \infty \text{ (1 pt)}$ As $x \to 0^-, \frac{1}{x} \to -\infty$ and $e^{\frac{1}{x}} \to 0$. Hence $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} x e^{\frac{1}{x}} = (\lim_{x \to 0^-} x) (\lim_{x \to 0^-} e^{\frac{1}{x}}) = 0 \times 0 = 0 \text{ (1 pt)}$
- (b) Since $\lim_{x\to 0^+} f(x) = \infty$, x = 0 is a vertical asymptote.

For $a \neq 0$, f(x) is continuous at x = a and $\lim_{x \to a} f(x) = a \cdot e^{\frac{1}{a}} \neq \pm \infty$.

Hence x = a is not a vertical asymptote of y = f(x), for $a \neq 0$.

Therefore x = 0 is the only vertical asymptote. (1 pt for x = 0 is a vertical asymptote. 1 pt for no other vertical asymptotes.)

(c) To find slant asymptotes, we first find their slopes which are

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} e^{\frac{1}{x}} = e^{\lim_{x \to \pm \infty} \frac{1}{x}} = e^0 = 1.$$

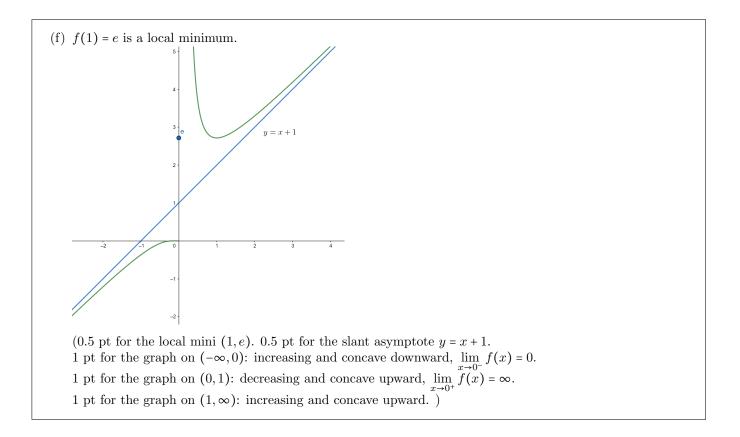
(1 pt for trying computing $\lim_{x \to \pm \infty} \frac{f(x)}{x}$. 1 pt for the correct limit.) Then we compute

$$\lim_{x \to \pm \infty} f(x) - 1 \cdot x = \lim_{x \to \pm \infty} x \left(e^{\frac{1}{x}} - 1 \right) = \lim_{x \to \pm \infty} \frac{e^{\frac{1}{x}} - 1}{\frac{1}{x}} \stackrel{\text{let}}{=} \frac{1}{y = \frac{1}{x}} \lim_{y \to 0^{\pm}} \frac{e^{y} - 1}{y} \stackrel{\underline{0}}{=} \lim_{y \to 0^{\pm}} \frac{e^{y}}{1} = 1.$$

(1 pt for trying computing $\lim_{x \to +\infty} f(x) - x$. 2 pts for the correct limit.)

Hence y = x + 1 is the slant asymptotes. f(x) approaches x + 1 both when x approaches ∞ and when x approaches $-\infty$. (1 pt for the final answer.)

- (d) $f'(x) = e^{\frac{1}{x}} \frac{1}{x}e^{\frac{1}{x}}$ (1 pt) Since $f'(x) = e^{\frac{1}{x}}\frac{(x-1)}{x}$ f'(x) > 0 for $x \in (-\infty, 0) \cup (1, \infty)$, f'(x) < 0 for $x \in (0, 1)$ Hence f(x) is increasing on $(-\infty, 0) \cup (1, \infty)$ and f(x) is decreasing on (0, 1). (1 pt for correct partition, x = 0, x = 1. 1 pt for intervals of increase $(-\infty, 0)$ and $(1, \infty)$. 1 pt for the interval of decrease (0, 1).) (e) $f'' = -\frac{1}{x}e^{\frac{1}{x}} + \frac{1}{x}e^{\frac{1}{x}} + \frac{1}{x}e^{\frac{1}{x}} = \frac{1}{x}e^{\frac{1}{x}}$ (2 pts)
- (e) $f'' = -\frac{1}{x^2}e^{\frac{1}{x}} + \frac{1}{x^2}e^{\frac{1}{x}} + \frac{1}{x^3}e^{\frac{1}{x}} = \frac{1}{x^3}e^{\frac{1}{x}}$ (2 pts) f''(x) > 0 for $x \in (0, \infty)$ and f''(x) < 0 for $x \in (-\infty, 0)$. Hence f is concave upward on $(0, \infty)$ and is concave downward on $(-\infty, 0)$. (1 pt for concavity on $(0, \infty)$. 1 pt for concavity on $(-\infty, 0)$.)



7. (14%) **Figure 2** below shows a circle C_1 centred at O of radius 1. Let RS be a horizontal chord such that $\angle ROS = 2\theta$ with $0 < \theta < \frac{\pi}{2}$ and C_2 be the circle centred at O and tangent to RS. We denote by D the region enclosed by the circles and the chord RS.

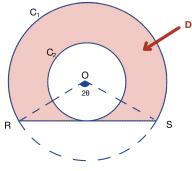


Figure 2.

- (a) (8%) Show that the maximum area of the region D equals $\pi \tan^{-1}(\pi)$ and find the corresponding value of θ at which the maximum value occurs.
- (b) (4%) Let s be the perimeter of the region D. Find $\frac{ds}{d\theta}$.
- (c) (2%) Luke claims that when the area of D is maximized, its perimeter is also maximized. Do you agree with Luke ? Justify.

Solution:

- (a) Let A be the area of D.
 - (0.5M) Area enclosed by C_1 equals π
 - (0.5M) Area enclosed by C_2 equals $\pi \cos^2 \theta$
 - (0.5M) Area of the triangle ORS equals $\cos\theta\sin\theta$
 - (0.5M) Area of the sector ORS equals $\frac{2\theta}{2\pi} \cdot \pi = \theta$

Therefore, $A = \pi - \pi \cos^2 \theta - \theta + \cos \theta \sin \theta$.

(1M) Then $\frac{dA}{d\theta} = 2\pi \sin\theta \cos\theta - 1 + \cos^2\theta - \sin^2\theta = 2\pi \sin\theta \cos\theta - 2\sin^2\theta = 2\sin\theta \cos\theta(\pi - \tan\theta).$

(1M) Set
$$\frac{dA}{lo} = 0$$
.

(1M) As $0 < \theta < \frac{\pi}{2}$, we have $\sin \theta \cos \theta \neq 0$ and hence we have $\tan \theta = \pi \implies \theta = \tan^{-1}(\pi)$ is the only critical number.

(2M) When $0 < \theta < \tan^{-1}(\pi)$, $\frac{dA}{d\theta} > 0$ and when $\tan^{-1}(\pi) < \theta < \frac{\pi}{2}$, $\frac{dA}{d\theta} < 0$, the first derivative test implies that A attains a maximum value when $\theta = \tan^{-1}(\pi)$.

(1M) When $\tan \theta = \pi$, we have $\sin \theta = \frac{\pi}{\sqrt{\pi^2 + 1}}$ and $\cos \theta = \frac{1}{\sqrt{\pi^2 + 1}}$. Hence, $A(\tan^{-1}\pi) = \pi - \pi \cdot \frac{1}{\pi^2 + 1} - \tan^{-1}(\pi) + \frac{\pi}{\pi^2 + 1} = \pi - \tan^{-1}(\pi)$.

Marking Scheme for Q7(a).

0.5+0.5+0.5+0.5M for writing down the correct area function (*) 1M for derivative of A 1M for setting $dA/d\theta = 0$ (*) 1M for finding the critical number $\theta = \tan^{-1}(\pi)$ (#) 2M for justifying the maximality (accept argument using the second derivative test, or, analysing $\theta \to 0^+$ and $\theta \to (\pi/2)^-$) (*) 1M for correct computation of $A(\tan^{-1}(\pi))$

Remark.

1. Items marked with (\star) will only be awarded if the area function is correct.

2. 1M in (\sharp) will be given to any candidates who demonstrate ability to justify maximality (for example, using first/second derivative tests), despite having incorrect calculations earlier.

(b)

- (0.5M) Circumference of C_1 equals 2π
- (0.5M) Circumference of C_2 equals $2\pi \cos \theta$
- (0.5M) Perimeter of the arc RS equals 2θ
- (0.5M) Length of the straight line RS equals $2\sin\theta$

Therefore, $s = 2\pi - 2\theta + 2\pi \cos \theta + 2\sin \theta$.

(2M) Hence, $\frac{ds}{d\theta} = -2 - 2\pi \sin \theta + 2 \cos \theta$.

Marking Scheme for Q7(b).

 $(0.5+0.5M)\times 4$ for each of the four terms and its derivative

(c) Since

$$\frac{ds}{d\theta}\Big|_{\theta=\tan^{-1}(\pi)} = -2 - \frac{2\pi^2}{\sqrt{\pi^2 + 1}} + \frac{2}{\sqrt{\pi^2 + 1}} \stackrel{\neq}{=} \frac{0}{(1M)},$$

s does not attain its maximum value at $\theta = \tan^{-1}(\pi)$ so we do not agree with Luke.

Marking Scheme for Q7(c).

1M for evaluating $ds/d\theta$ at the critical point found in (a)

1M for mentioning that the above quality is non-zero and leading to a correct conclusion

Remarks.

1. If a student computed Q7(a) incorrectly or unsuccessfully, he/she can earn at most 1M from this part.

2. Just disagreeing Luke without any valid argument will receive no credits.