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1. Suppose we are given a function f(z,y) whose second order partial derivatives are continuous. Fix two points
P=(1,-1) and @ = (1.2,-1.1) on the zy-plane. It is known that :
e (-3,2,2) is a normal vector to the surface z = f(z,y) at (1,-1, f(P)),

e f(z,y) attains an extreme value at Q.

Answer the following questions.
(a) (2%) Find ﬁ(1,—1) and ﬁ(1,—1).
ox Jy

Solution:

Since (fz(1,-1), fy(1,-1),-1) is normal to the surface z = f(x,y) at (1,-1, f(P)),

we have (f5(1,-1), fy(1,-1),-1) = A(-3,2,2) for some A (or (f»(1,-1), f,(1,-1),-1) J (-3,2,2)). (1%)
So A=-1/2, fo(1,-1) =3/2 and f,(1,-1) = -1. (1%)

(b) (4%) Use the linearization of f(x,y) at P = (1,-1) to estimate the value of f(1.2,-1.1) — f(1,-1).

Solution:
The linearization of f at (1,-1) is

L(z,y) = f(1,-1) + fo(1,-1)(z - 1) + f, (1, -1)(y + 1) = f(1,-1) + g(w -1) - (y+1).(2%)
Then

F(1.2,-1.1) = £(1,-1) » L(1.2,-1.1) - f(1,-1) = %(1.2 1) = (-1.1+1) = 0.4.(2%)

(¢) (1%) (Circle the best answer.) f(Q) is a

(i) maximum value (i) minimum value

Solution:
Answer is (). (1%)
Since f(Q) is an extreme value and f(Q) > f(P) by (b), we have f(Q) is a maximum value.

(d) (1%) (Circle the best answer.) If f;,(Q) # 0, then f.,(Q) is
(i) positive (ii) non-negative (iii) zero (iv) non-positive (v) negative

Solution:

Answer is (v). (1%)

Since f(Q) is a maximum value, we have f,,(Q) <0. If f,.(Q) =0, we have D(Q) = —[ f,(Q)]? < 0 which
implies that @ is a saddle point of f. It contradicts to (¢) and we have f,.(Q) is negative.
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2. Consider the function

f(x y){xffyz if (z,y) # (0,0)
0 if (z,y) = (0,0)

(a) (4%) Show that f(x,y) is continuous at (0,0).

(b) (6%) Find ( l)inzo 0 fo(z,y). Is fz(x,y) continuous at (0,0)7 Explain.
,y)~(0,

(c) (5%) Let u = (a,b) be a unit vector. Use the definition of directional derivatives to find Dy, f(0,0). (Express
your answer in terms of a and b.)

(d) (3%) Using (c), explain why f(z,y) is not differentiable at (0,0).

Solution:
(a) Sol 1:
£ (w)] = || = ielal < ol < /a2 2.
Hence |f(x,y)| — 0 as (x,y) approaches (0,0). (3 pts for showing that (x,yl)ig%o,o)f(x’y) =0)
Since (x,yl)igzo,o) f(z,y)=0= f(0,0), we conclude that f is continuous at (0,0).
(1 pt for showing that f(x,y) is continuous at (0,0).)
Sol 2:

By polar coordinates,

r3 cos @ sin? 0

|f(rcosf,rsinf)| = 5
”

‘ = |r||cosf]sin® @ < |r| - 0 as r - 0.

Hence lim f(z,y) = liH(l) f(rcosf,rsind) =0 (3 pts for showing that  lim O)f(x,y) =0)
e

(z,y)—(0,0) (z,y)—(0,
Since ( I)IH% )f(x,y) =0= f(0,0), we conclude that f is continuous at (0,0).
z,y)—(0,0

(1 pt for showing that f(z,y) is continuous at (0,0).)

(b) For (z,) # (0,0), f, = SO0 - or (2 pts).

(22 +y2)? (2Z+y2)?

= lim £0a9=F(0-0) _ 13, 0-0 _
f2(0,0) = lim == lim 552 =0 (1 pt)

f=(0,y) = Z—i =1 for all y # 0.

Hence fx(x,y) -1+ f,(0,0) as (z,y) approaches (0,0) along the y-axis.
This shows that f,(z,y) is not continuous at (0,0).

(Or we can also show that f,(x,y) — 0 as (x,y) approaches (0,0) along the z-axis. Hence ( l)irrzo 0 felz,y)
z,y)~(0,
does not exist. f,(x,y) is not continuous at (0,0).)

(3 pts for showing that f,(z,y) is not continuous at (0,0).)

(c)
Dyf(0,0) = lim f(“h’bh)h_ 1(0,0) (2 pts for definition of Dy f(0,0))
h3(12b2 _
i B _ 2_ 12
= }LI_I)I(I) - }ILI_I}(I) ab” = ab (3 pts for the answer)

(d) If f(x,y) is differentiable at (0,0), the Dy f(0,0) = af,(0,0) +bf,(0,0). (2 pts)
However D, f(0,0) = ab® # f,.(0,0)a + f,(0,0)b.
Therefore we know that f us not differentiable at (0,0). (1 pt)
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. Consider the function I(z,y) = [ (t? + 3t) - e’ dt.
1-y

(a) (6%) Find all the critical points of I(x,y).

(b) (6

%) Classify the critical points of I(z,y) as local maxima, local minima or saddle points.

Solution:

(a)

The partial derivatives are
I, = (2% + 37;)6‘”2, (2 points)
I,=[(1-y)*+3(1- y)]e(lfy)z.(Q points)
The critical points will be the solutions of I, = 0 and I, = 0. Namely, 22 +3x=0and (1-9)2+3(1-y) =0
which yield z =0,-3 and y = 1,4. So the critical points are (0,1), (0,4),(-3,1), and (-3,4).(2 points)

The critical points we found in (a) all have gradient zero, so we use Second Derivatives Test to classify them.
We compute Iy, [y, and I,.

Iy =Qx+ 3)6‘/""2 + (2 + 3x)e””22:c,
_ 2 _20\2
Ly = [2(y 1) = 3] + [(1-y)* +3(1 )] 2(y - 1).

Both I, and I, are zero. So

D =TI,y ~ 12, = [20+ 3+ (2 + 32)22]e” 079" (25 - 5.+ [(1 - y)? + 3(1 - 9)]2(y - 1)).(2 points)
D(0,1) = -9 <0, so a saddle point. D(0,4) =9¢° >0, and I,,(0,4) =3 > 0, so a local min. D(-3,1) = 9¢” > 0,
and I,,(-3,1) = -3¢° < 0, so a local max. Finally, D(-3,4) = -9¢!® < 0, a saddle point. In summary, (0, 1)
and (-3,4) are saddle points, (0,4) is a local min, and (-3,1) is a local max. (1 point for each critical
point.)
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4. (12%) By the method of Lagrange multipliers, find the absolute maximum and minimum values of
fx,y,2) =2 = 2y* = 22% + 4oz

on the unit sphere 2% + y? + 2% = 1.

Solution:
Let

fz,y,2) =2 - 2y - 222 + daz,
g(z,y,2) =2 +y* + 22 - 1.

By the method of Lagrange multiplier, we have the set of equations

2 +4z =2z (1)
~dy =2\y (2)
dr —4z =2)z (3)
along with g(z,y,z) = 0. Equation (2) gives either y =0 or A = =2. If A = -2, the system becomes a set of linear
equations
3x+22=0
z=0

from which we get (z,y,2) =£(0,1,0). If y = 0, we can eliminate A by = x (3) - z x (1) and obtain
22% = 3xz-222 = (2 + 2) (- 22) = 0,

hence z = 5, -2x. If z = 5, we have g(z,0, 5 gﬁ—l =0, from which we get (z,y,2) = + (\[,O f) If z=-2x
we have g(x70,—2x) = 522 -1 = 0, from Wthh we get (z,y,2) = i(%,o,—%). The values of f at those six
critical points are

1

7 \/—))—7f((\/— BV

respectively, so the maximum is 2 and the minimum is -3.

F(0,1,0)) = =2, f(+(—= 2 ))-

Marking scheme

e Setting up the equation of the Lagrange multiplier correctly (4%).
— Incorrect equations with a very minor mistakes (an incorrect sign etc.) (3%).
e 1% for finding each of the six solutions correctly (6% in total).

— 1% for being aware of the existence of the two cases A\ = -2 and y = 0 (with incomplete calculation)

— 1% for finiding the fact x = 2z, -2/2 (or the factorization (z —22)(2x + z) = 0) for y = 0 case.

e Finding correct maximal value (1%), minimal value (1%)
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5. Depicted in the Figure, E is an ‘apple-shaped’ solid that, in spherical coordinates, occupies the region
E ={(p,¢9,0) :0<p<l—-cosg, 0<p<m, 0<6<27}.

It is known that F has a constant density p(z,y, z) = 2.
(a) (6%) Find the mass of E.
(b) (8%) Let (0,0,z) be the center of mass of E. Find Z.

-

Figure. The apple-shaped solid F

Solution:
Prob.5: The following crucial steps must be shown clearly

(a) Total mass:

M= [ [ [p2dV =2 [27 [T [170 p?singdpdodd ... 2%
==L 2%

cither = 3£ [1,(1 e = {02 - 2
or = %[M]g =381 2%

(b) The z-component of center of mass:

Z= L[ [ [p2zdV = 2 [27 [T [0 psingeos pdpdpdd  ....3%

== [y (1-cos¢)*sing cospdp ... 2%
. T [l 1-z)° 1-2)6 - —
either = 7= [ z(1 - z)*dz = %[% - %]11 = ?4
_ m(l-cos¢)® _ (1-cos¢)®qr _ 3 -128 _ -4
or= &[Uzcose)’  (mcos)yr 3ol o1 3%
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(a) (9%) Find the volume of the solid that is below the parabolid z = 9 — 2% — y? and above the region enclosed by
the lemniscate 7% = cos(260) on the xy-plane (See Figure).

ffR(36 S 2?4922y dV

where R = {(x,y,2) e R : 2% + 49* + 922 < 36}.

(b) (9%) Evaluate the triple integral

Figure. The lemniscate 72 = cos(26)

Solution:

(a) In cylindrical coordinates, the volume is

/4 \/cos(260) 9-r2 57/4 \/cos(260) 9-r2
//[ / rdzdrd0+[ / / r dz dr df
—-m/4 0

By symmetry, the two integrals are the same value.

/4 \/cos(26) 9-r2 /4 \/cos(26)
:2[ f f r dz dr df = 2[ f 9r —r® dr df
-7 /4 /4

/4 2 /4
5 f 9cos(26)  cos*(26) o = [ 9cos(20) - 1+ cos(46) dg=9-=
2 1 /1 4 8

(b) Let z = 6u, y=3v, z=2w, then the triple integral becomes

f/f (36 - 3627 — 3612 — 3622)|J] dV:64/ff (1-u? - 0% —w?) dV
u2+v2+w2<1 uZ+v2+w2<1

Use spherical coordinates u = psin ¢ cos@, v = psin¢gsinf, w = pcos ¢.
2r pmorl 1 1 34567
—6* [ [T [ - pptsing dp do db - (6°)(2 2(7—7)=
o Sy )y A=p)psing dp dg df = (67)(2m)(2) | 5 - < z

Grading: In general, -2% for each big mistake and -1% for each small mistake.

(a) 5% for cylindrical coordinates integral setup, 4% for computation (they get partial credit in computation if
their setup is similar to the answer).

(b) 5% for setting up an integral that they can evaluate, 4% for computation (they get partial credit in compu-
tation if their setup is similar to the answer).

Note: Both problems can be evaluated using zyz-coordinates.
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V3
7. (a) (i) (2%) For each fixed value of y, find [ cos(zy) dz.
1

(ii) (6%) Use your result in (i) to transform

 pee eV (sin(v3y) - sin(y))
I= [0 y W

into a double integral and then evaluate I by Fubini’s Theorem.

(b) (10%) Use the change of variables u = xy and v = y to evaluate

Y
———dA
[/R 1+ 2292

where R is the region enclosed by the curves zy =1, zy = /3, =1 and y = 3.

Solution:

@) () Marking scheme for 7(a)(i).
All or nothing. 1M for sign error.

V3 sin(x V3 sin —sin
fl ’ cos(zy) dx = [(yy)] _ (\/§y) (v)

1 )
Marking scheme for 7(a)(ii).
(IM)  Use (a) to transform I into a double integral
(IM)  Use Fubini’s theorem (correctly)
(if) | (2M)*  Correct antiderivative for dy
(IM)  For realising lim, . e7¥ - (bounded function) = 0
(IM)  Correct answer
Remark for *. 1M for any candidates who apply IBP twice but yield incorrect anti-derivative.

fow e—y.(sin(\/ijy)—sin(y)) ay @ fow fl\/ge—y.cos(xy)dxdy

(1M)

. V3 oo
Fubini f f e - cos(xy)dydx
1 0

(1M)

IBP f\/g e V- (zsin (zy) - cos (xy)) de
1 2 +1

(2M) 0

—
(121)
T 12
——
(1)
Marking scheme for 7(b).
(2M) correct Jacobian
(IM+1M)  correct u- and v-components of the transformed region (okay to just sketch the region)
(b) | (3M) correct change of variable formula : integrand, integration limits for dv and du
(IM+1M)  correct antiderivatives
(1M) correct answer
Remark. the first 7M will be awarded as long as a candidate transforms the integral perfectly.
x = l E— 1
Let u = xy and v = y. Then we have v and the Jacobian equals to 6 1= - Moreover, the
y=v Y
(2M)
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given region is transformed as a trapezoidal region

{(u,v) : 1<u<V3 and u<v <3}
| —_——

(1M) (1M)
V3 3 1
/deA:f f Y dvdu
R 1+ 2292 1 w l+u? v
(3M)
V3 g _
:f 3-u o
1 1+u?

1
3tan™(u) - = In(1 +u?)
N . 2
O

m In2

T4 2
——
(1M)

V3

1
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