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1. (20 pts) 計算以下的極限。(不可以使用 L’Hospital’s rule)

Evaluate the following limits. (Use of L’Hospital’s rule is not allowed.)

你可以直接使用以下的極限 （不用證明）。

You may use, without proof, the following standard limits.

lim
x→0

sinx

x
= 1 lim

x→±∞(1 +
1

x
)

x

= e lim
x→1

lnx

x − 1
= 1

(a) (5 pts) lim
x→∞

3x + ex

1 + 22x
(b) (5 pts) lim

x→0

1 − cos(2x)
√
x2 + 4 − 2

(c) (5 pts) lim
x→π

2

ln(sin2 x)

cos2 x
(d) (5 pts) lim

x→∞(
x + 1

x − 1
)

x

Solution:

(a)

lim
x→∞

3x + ex

1 + 22x
= lim

x→∞
1x + (e/3)x

(1/3)x + (4/3)x
(3%)

= 0 (2%).

(b)

lim
x→0

1 − cos(2x)
√
x2 + 4 − 2

= lim
x→0

1 − cos(2x)
√
x2 + 4 − 2

√
x2 + 4 + 2
√
x2 + 4 + 2

= lim
x→0

(1 − cos(2x))(
√
x2 + 4 + 2)

x2
(2%)

= lim
x→0

2 sin2 x

x2
(
√
x2 + 4 + 2) (2%)

= 2 ⋅ 4 = 8 (1%).

(c)

lim
x→π/2

ln(sin2 x)

cos2 x
= − lim

x→π/2
ln(sin2 x)

sin2 x − 1
(2%)

(let t = sin2 x) = − lim
t→1

ln t

t − 1
(2%)

= −1 (1%).

(d)

lim
x→∞(

x + 1

x − 1
)

x

= lim
x→∞(1 +

1

(x − 1)/2
)

2⋅ x−12 +1
(3%)

(let y = (x − 1)/2) = lim
y→∞(1 +

1

y
)

2y+1

= e2 ⋅ 1 = e2 (2%).
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2. (20 pts) 計算以下導函數或導數。 Compute the following derivatives.

(a) (8 pts) f(x) = x3
⋅ e(x

2+2), 求 f ′(x) 和 f ′′(x)。Find f ′(x) and f ′′(x).

(b) (6 pts) g(x) =
x

tan−1(sinx)
, 求 g′(x)。Find g′(x).

(c) (6 pts) h(x) = xx
⋅ (1 + x2

)
1
x , 求 h′(1)。 Find h′(1).

Solution:

(a) Product rule and chain rule.

f ′(x) = (3x2) ⋅ ex
2+2
+ (ex

2+2
⋅ 2x) ⋅ x3

= (2x4
+ 3x2) ex

2+2

f ′′(x) = (8x3
+ 6x) ⋅ ex

2+2
+ (ex

2+2
⋅ 2x) ⋅ (2x4

+ 3x2) = (4x5
+ 14x3

+ 6x) ex
2+2

(b) Quotient rule and chain rule.

g′(x) =
(1) ⋅ tan−1(sinx) − ( cosx

1+sin2 x
) ⋅ x

(tan−1(sinx))
2

(c) Logarithmic differentiation.

lnh(x) = x lnx +
ln(1 + x2)

x

h′(x)
h(x)

= lnx + 1 +
2

1 + x2
−
ln(1 + x2)

x2

h′(1) = h(1) ⋅ (0 + 1 + 1 − ln 2) = 4 − 2 ln 2.

Grading scheme:

Part (a) is 5+3. Part (b) is 6. Part (c) is 5+1.

0 points if they couldn’t use the derivative rules correctly.

-3 points if they clearly remembered a derivative formula wrong.

-1 point for computational mistakes/miscopy/oversimplify.
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3. (12 pts) 方程 x2
+ y2 = (2x2

+ 2y2 − x)2 在點 (0,
1

2
) 附近可以描寫成隱函數 y = y(x)。

Near the point (0,
1

2
), the equation x2

+ y2 = (2x2
+ 2y2 − x)2 defines implicitly a function y = y(x).

(a) (7 pts) 求導數
dy

dx
∣
(0, 12 )

。 Find
dy

dx
∣
(0, 12 )

.

(b) (5 pts) 使用 y(x) 在 x = 0 的線性逼近去估算 y(0.1) 的值。

Use linear approximation of y(x) at x = 0 to approximate the value of y(0.1).

Solution:

(a) Regard y as a function of x and take derivatives on both sides of the equality above we have

2x + 2y
dy

dx
= 2(2x2

+ 2y2 − x) ⋅ (4x + 4y
dy

dx
− 1) (4%)

Put (x, y) = (0,1/2) in the above equality, we have

dy

dx
∣(0,1/2) = 2 ⋅ 2 ⋅

1

4
(2

dy

dx
∣(0,1/2) − 1) (2%)

⇒
dy

dx
∣(0,1/2) = 1 (1%).

(b)

y(x) ≈ y(0) + y′(0)x (2%) ⇒ y(0.1) ≈
1

2
+ 1 ⋅ 0.1 = 0.6 (3%).
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4. (10 pts) 考慮函數 Consider the function f(x) = 4 tan−1(x3
) + ex.

(a) (4 pts) 說明 : f(x) 的反函數存在。 Explain briefly why the inverse function of f(x) exists.

(b) (6 pts) 設 g(x) 為 f(x) 的反函數， 求 g′(π + e)。 Let g(x) be the inverse function of f(x). Find g′ (π + e).

Solution:

(a) � (2M) Correct f ′(x)

� (1M) Writing f ′(x) > 0

� (1M) Saying f(x) is strictly increasing

Sample solution.

f ′(x) =
12x2

1 + x6
+ ex

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2M

> 0
°
1M

so f is strictly increasing ⋯(1M).
This implies that the inverse function of f(x) exists.

(b) � (1M) Discovering f(1) = π + e

� (2M) Correct f ′(1)

� (1M) Correct formula for g′(f(x))

� (2M) Correct answer

Sample solution.
Note f(1) = π + e ⋯ (1M)
and f ′(1) = 6 + e ⋯ (2M).

Therefore, g′(π + e) = g′(f(1)) =
1

f ′(1)
⋯ (1M)

=
1

6 + e
⋯ (2M)
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5. (6 pts) 說明 : x = 0 為方程式 x + cos−1 x =
π

2
的唯一解。

Prove that x = 0 is the only solution to the equation : x + cos−1 x =
π

2
.

Solution:

� 2M - Correct citing of Rolle/MVT/Consequences of MVT

� 2M - Correct derivative of x + cos−1(x)

� 2M - Overall correct and complete argument

Sample solution 1.
Let F (x) = x + arccos(x). Suppose x = α is another solution to the equation. Then F (0) = F (α).
Hence, Rolle’s Theorem implies that F ′(c) = 0 for some c lying strictly between 0 and α. ⋯ (2M)

However, F ′(c) = 0 implies 1 −
1

√
1 − c2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2M

= 0 and

hence c = 0 which is a contradiction. ⋯ (Complete, correct argument 2M)

Sample solution 2.
Let F (x) = x + arccos(x).

Then 1 −
1

√
1 − x2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2M

< 0 for −1 < x < 0 and 0 < x < 1.

Therefore, F is strictly decreasing before reaching x = 0 and also after leaving x = 0.⋯ (2M)

Hence the function crosses y =
π

2
at most (and hence exactly) once. ⋯ (Complete, correct argument 2M)
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6. (20 pts) 考慮函數 Consider the function f(x) = 6x − x2
− 4 lnx.

(a) (1 pt) 寫出函數 f(x) 的定義域。 Write down the domain of f(x).

(b) (4 pts) 求 f ′(x)，找出函數 f(x) 遞增、遞減的區間。

Find f ′(x). Write down the interval(s) of increase and interval(s) of decrease of f(x).

(c) (4 pts) 求 f ′′(x)， 判斷 y = f(x) 的凹性。

Find f ′′(x). Write down the interval(s) on which f(x) is concave upward and the interval(s) on which f(x) is
concave downward.

(d) (4 pts) 找出所有局部最大/小值和反曲點。 Write down (if any) the local extremas and inflection points.

(e) (2 pts) 找出 y = f(x) 的所有漸近線。 Find all the asymptotes of y = f(x).

(f) (5 pts) 畫出 y = f(x) 的圖形。 Sketch the graph of y = f(x).

Solution:

(a) x > 0.

(b)

f ′(x) = 6 − 2x −
4

x
=
−2(x2 − 3x + 2)

x
=
−2(x − 1)(x − 2)

x

Increasing: (1,2)

Decreasing: (0,1) and (2,∞)

(c)

f ′′(x) = −2 +
4

x2
=
−2(x2 − 2)

x2
=
−2(x −

√
2)(x +

√
2)

x2

Concave upward: (0,
√
2)

Concave downward: (
√
2,∞)

(d) Local minimum at x = 1, y = 5, local maximum at x = 2, y = 8 − 4 ln 2, inflection point (
√
2,6
√
2 − 2 − 2 ln 2).

(e) Vertical asymptote at x = 0 since lim
x→0+

f(x) = ∞.

No horizontal asymptote as x goes to infinity since lim
x→∞ f(x) = −∞.

No slant asymptote as x goes to infinity since lim
x→∞

f(x)

x
= −∞.

(f)
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Grading scheme:

(a) (1pts) Right 1 or wrong 0.

(b) (5pts) 2 pts for derivative. 3 pts for determining the signs.

(c) (5pts) Follow through. 2 pts for derivative. 3 pts for determining the signs.

(d) (4pts) Follow through. -2 for each mistake.

(e) (2pts) 1 point for horizontal asymptote and 1 point for vertical asymptote.

(f) (5pts) Follow through. Their picture need to match their answers above. -1 for each item not labeled or
different from previous answers.
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7. (12 pts) 在拋物線 y = x2 內側且水平線 y = 2 下方畫一長方形使得長方形的頂邊與水平線 y = 2 重合 (見圖)， 求此長方形
最大面積。

Find the largest rectangle that fits inside the graph of the parabola y = x2 below the line y = 2, with the top side of
the rectangle on the horizontal line y = 2.

Solution:

� 4M - for writing down the correct function to maximize

� 2M - correct derivative

� 2M - correct critical number

� 3M - any correct argument that verifies maximality of the critical number

� 1M - correct answer

Sample solution.
Let (x,x2

) be the coordinates of the right hand corner of the rectangle. We want to maximize the function

A(x) = (2x)(2 − x2
) = 4x − 2x3

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
4M

.

Differentiating gives
A′(x) = 4 − 6x2

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
2M

.

Setting A′(x) = 0 gives x =

√
2

3
±
2M

(negative rejected).

(**) Since A′′
⎛

⎝

√
2

3

⎞

⎠
= −12 ⋅

√
2

3
< 0,

the second derivative test implies that A(x) attains a maximum at x =

√
2

3
⋯ (3M)

and at which A(

√
2

3
) =

8
√
6

9
²

1M

.

Alternative for (**). (Using first derivative test)

x 0 ⋯

√
2

3
⋯

√
2

A′(x) + + 0 − −

Therefore, the first derivative test implies that A(x) attains a maximum at x =

√
2

3
.

and at which A(

√
2

3
) =

8
√
6

9
.

Another alternative for (**). (Using Extreme Value Theorem)
Compare the critical value and values at boundaries :
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A(

√
2

3
) =

8
√
6

9
²

and A(0) = A(
√
2) = 0.

We conclude that A(x) attains a maximum at x =

√
2

3
.
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