1. Find the following limits.

(a) (5%)
$$\lim_{x \to \infty} \frac{-x^{\frac{3}{2}} + 2x}{3x^{\frac{3}{2}} + 3x - 5}$$
 (b) (6%) $\lim_{x \to 0^+} \left(\frac{\tan 2x}{x} + \frac{1}{\ln x}\right)$ (c) (6%) $\lim_{x \to 0} (1 + 3x)^{\frac{1}{\arcsin 2x}}$
(d) (5%) $\lim_{x \to 0} \left(\frac{1}{2x} - \frac{1}{1 - e^{-2x}}\right)$

Solution:
(a)
$$\lim_{x \to \infty} \frac{-x^{\frac{3}{2}} + 2x}{3x^{\frac{3}{2}} + 3x^{-5}} = \lim_{x \to \infty} \frac{-1 + 2x^{-\frac{3}{2}}}{3 + 3x^{-\frac{1}{2}} - 5x^{-\frac{3}{2}}} (3 \text{ pts}) = \frac{-1 + 2 \cdot 0}{3 + 3 \cdot 0 - 5 \cdot 0} = -\frac{1}{3} (2 \text{ pts})$$
(b)
$$\lim_{x \to 0^{+}} \left(\frac{1}{\ln x}\right) = 0 (: \lim_{x \to 0^{+}} \ln x = -\infty) (1 \text{ pt})$$

$$\lim_{x \to 0^{+}} \frac{\tan 2x}{x} = \frac{1 \cdot H}{\frac{1}{8}} \lim_{x \to 0^{+}} \frac{2 \sec^{2} 2x}{1} (2 \text{ pts for } (\tan x)' = \sec^{2} x. 1 \text{ pt for the chain rule.})$$

$$= 2(1 \text{ pt})$$
Hence
$$\lim_{x \to 0^{+}} \left(\frac{\tan 2x}{x} + \frac{1}{\ln x}\right) = \lim_{x \to 0^{+}} \left(\frac{\tan 2x}{x}\right) + \lim_{x \to 0^{+}} \frac{1}{\ln x} = 2$$
Another solution for computing
$$\lim_{x \to 0^{+}} \frac{\tan 2x}{x} = \lim_{x \to 0^{+}} \frac{\sin 2x}{2x} \cdot \frac{1}{\cos 2x}$$

$$\lim_{x \to 0^{+}} \frac{\tan 2x}{2x} = \lim_{x \to 0^{+}} \frac{\sin 2x}{2x} \cdot 2 \cdot \frac{1}{\cos 2x} (2 \text{ pts})$$

$$= (\lim_{x \to 0^{+}} \frac{\sin 2x}{2x}) \cdot (\lim_{x \to 0^{+}} 2 \cdot \frac{1}{\cos 2x}) (2 \text{ pts})$$

$$= 1 \cdot 2 = 2 \quad (2 \text{ pts})$$
(Students can use the limit
$$\lim_{x \to 0^{+}} \frac{\sin 2x}{x} = 2$$
)
(c)
$$\ln \left((1 + 3x) \frac{\ln (1 + 3x)}{\ln (2x)} + \frac{1 \cdot H}{\frac{1}{8}} \lim_{x \to 0^{+}} \frac{\frac{3 \cdot 1}{2x}}{\sqrt{1 - 4x^{2}}} (1 \text{ pt for } (\ln(1 + 3x))', 2 \text{ pts for } (\arctan(2x))')$$

$$= \frac{3}{2} (1 \text{ pt})$$
Hence
$$\lim_{x \to 0^{+}} \frac{\ln(1 + 3x)}{\pi (\sin(2x)} + \frac{1}{\frac{1}{8}} \lim_{x \to 0^{+}} \frac{\frac{1}{2x^{-2}} - \frac{2x}{2}}{\sqrt{1 - 4x^{2}}} (2 \text{ pts})$$

$$= \frac{1}{\frac{1}{2}} (2 e^{-2x} - \frac{2}{2} - \frac{2}{2} (2 \text{ pts})$$

$$= \frac{1}{\frac{1}{8}} \frac{1}{2x^{-2}} - \frac{1}{\frac{1}{8}} \frac{1}{2x^{-2}} - \frac{2}{2} (2 \text{ pts})$$

$$= \frac{1}{\frac{1}{8}} \frac{1}{2} (1 \text{ pt})$$

- 2. Let $f(x) = \begin{cases} |x| \cos\left(\frac{1}{x}\right) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$
 - (a) (5%) Determine whether f(x) is continuous at x = 0. Explain your answer.
 - (b) (5%) Determine whether f(x) is differentiable at x = 0. Explain your answer.

Solution:

(a) Since $-1 \le \cos(\frac{1}{x}) \le 1$ for all $x \ne 0$, $-|x| \le |x| \cos(\frac{1}{x}) \le |x|$ for all $x \ne 0.(2 \text{ points})$ By Squeeze Theorem, $\lim_{x \to 0} |x| \cos(\frac{1}{x}) = 0.(2 \text{ points})$ Since $\lim_{x \to 0} |x| \cos(\frac{1}{x}) = f(0)$, f(x) is continuous at x = 0.(1 points)(b) $\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} (1 \text{ points})$ $= \lim_{x \to 0^+} \frac{|x| \cos(\frac{1}{x})}{x} (1 \text{ points})$ $= \lim_{x \to 0^+} \cos(\frac{1}{x}) (1 \text{ points})$ Since $\lim_{x \to 0^+} \cos(\frac{1}{x})$ does not exist(1 points), Hence f(x) is not differentiable at x = 0 (1 points). 3. Find f'(x).

(a) (7%)
$$f(x) = \arctan\left(\frac{x}{2}\right) + \ln\sqrt{\frac{x-2}{x+2}}$$
, for $x > 2$.
(b) (8%) $f(x) = x^{\ln(x^3)} + 2^x$, for $x > 0$.

Solution:

(a)

$$\frac{d}{dx}\left(\arctan\left(\frac{x}{2}\right)\right) = \frac{1}{1+(x/2)^2} \cdot \frac{d}{dx}\left(\frac{x}{2}\right) (2 \text{ points})$$

$$= \frac{2}{4+x^2} (1 \text{ points})$$

$$\frac{d}{dx}\left(\ln\sqrt{\frac{x-2}{x+2}}\right) = \frac{1}{\sqrt{\frac{x-2}{x+2}}} \cdot \frac{d}{dx}\left(\sqrt{\frac{x-2}{x+2}}\right) (1 \text{ points})$$

$$= \frac{1}{\sqrt{\frac{x-2}{x+2}}} \frac{1}{\sqrt{\frac{x-2}{x+2}}} \cdot \frac{2}{(x+2)^2} (1 \text{ points})$$

$$= \frac{2}{x^2-4} (1 \text{ points})$$

Hence $\frac{dy}{dx} = \frac{4x^2}{x^4 - 16}$ (1 points). (b) Let $a = x^{\ln(x^3)}$. Thus

$$\ln a = \ln(x^3) \ln x = 3(\ln x)^2 (2 \text{ points})$$

$$\Rightarrow \quad \frac{1}{a} \frac{da}{dx} = 6 \ln x \cdot \frac{1}{x} (2 \text{ points})$$

$$\Rightarrow \quad \frac{da}{dx} = \frac{6x^{\ln(x^3)} \ln x}{x} (1 \text{ points})$$

$$\frac{d}{dx} (2^x) = \ln 2 \cdot 2^x (2 \text{ points})$$
Thus $\frac{dy}{dx} = \frac{6x^{\ln(x^3)} \ln x}{x} + \ln 2 \cdot 2^x (1 \text{ points}).$

- 4. $\tan(x-y) = x^2 + \sin(2y)$ defines y as an implicit function of x near (0,0) which is denoted by y = y(x).
 - (a) (7%) Compute $\frac{dy}{dx}$ at (0,0).
 - (b) (5%) Write down the linearization of y(x) at x = 0. Use the linear approximation to estimate y(0.01).

Solution:

(a) $\tan(x - y(x)) = x^2 + \sin(2y(x)) \xrightarrow{\frac{d}{dx}} \sec^2(x - y) \cdot (1 - y') = 2x + 2\cos(2y) \cdot y'$ (4 pts total. 1 pt for $(\tan x)' = \sec^2 x$. 1 pt for $(\sin x)' = \cos x$. 2 pts for the chain rule.) At (x, y) = (0, 0), $\sec^2(0)(1 - y'(0)) = 0 + 2 \cdot \cos 0 \cdot y'(0)$ Hence $y'(0) = \frac{1}{3}$. (3 pts total. 2 pt for plugging in (x, y) = (0, 0). 1 pts for solving y'(0).) (b) The linearization of y(x) at x = 0 is L(x) = y(0) + y'(0)(x - 0) (1 pt) $= 0 + \frac{1}{3}x = \frac{1}{3}x$ (2 pts) ← (a)算錯的話, 這裡扣 1 分

Hence we can approximate y(0.01) by L(0.01) which is $L(0.01) = \frac{0.01}{3}$. (2 pts) ((a)算錯的話, 這裡再扣 1 分)

5. Dominant 7 is an acappella (阿卡貝拉) group formed by seven students at NTU. They have performed and won several international competitions. Currently they are planning to organise their first concert. When x tickets are demanded for their concert, the price of the tickets can be described by the function

$$p(x) = \frac{96}{\sqrt{x}} - \frac{x}{9}$$
 where $1 \le x \le 90$.

The cost in organising the concert is given by the function $C(x) = 0.001x^3 - 0.105x^2 + 300$.

- (a) (6%) Find the maximum revenue generated by the ticket sales. (Revenue = Price × Quantity demanded)
- (b) (5%) Discuss when the economy of scale occurs. i.e. the marginal cost C'(x) is decreasing.
- (c) (3%) Write down the profit function $\Pi(x)$. (Profit = Revenue Cost).
- (d) (4%) Student A claims that when the revenue is maximized, the profit is also maximized. Do you agree with Student A? Explain.

Solution:

(a)

Marking Scheme.

(1M) Writing down the correct revenue function

- (2M) Find R'(x) correctly (1M for each term)
- (1M) Find the correct critical number x = 36
- (2M) Any argument that x=36 indeed gives a maximum value

Sample solution.

The revenue function is $R(x) = x \cdot p(x) = 96\sqrt{x} - \frac{x^2}{9}$.

$$\frac{48}{48} - \frac{2x}{2}$$
. Set $B'(x) = 0$, we obtain

Differentiate :
$$R'(x) = \frac{40}{\sqrt{x}} - \frac{2x}{9}$$
. Set $R'(x) = 0$, we obtain $\underbrace{x = 36}_{(1M)}$.

(**) Since $R''(x) = -24x^{-\frac{3}{2}} - \frac{2}{9}$ and hence R''(36) < 0, the second derivative test implies that R(x) attains a maximum at x = 36.

Alternative for (**). (Using first derivative test)

Therefore, the first derivative test implies that R(x) attains a maximum at x = 36.

Another alternative for (**). (Using Extreme Value Theorem)

Compare the critical value and values at boundaries : $R(1) = 96 - \frac{1}{9}$, $R(36) = 96 \cdot 6 - 144$ and $R(90) = 96\sqrt{90} - 900$. We conclude that R(x) attains a maximum at x = 36.

(b)

Marking Scheme. (1M) Writing down C''(x) < 0 or $C''(x) \le 0$ (2M) Find C''(x) correctly (2M) Solving the inequality correctly. Remark 1. Accept both < and \le . Remark 2. No deductions for omitting $1 \le x$ in the final answer.

Sample solution.

The economy occurs when

$$\underbrace{C''(x) < 0}_{1\mathrm{M}} \Leftrightarrow \underbrace{0.006x - 0.21}_{2\mathrm{M}} < 0 \Leftrightarrow \underbrace{x < 35}_{2\mathrm{M}}$$

Hence, the economy occurs when $1 \le x < 35$.

(c)

Marking Scheme.

Almost all or nothing. Minor deduction for obvious typo.

Sample solution.

$$\Pi(x) = x \left(\frac{96}{\sqrt{x}} - \frac{x}{9}\right) - (0.0001x^3 - 0.105x^2 + 300) \cdots (3M)$$

(d)

Marking Scheme.

The key argument is to verify that x = 36 is not a critical number for the profit/cost function. (2M) Correct approach

(2M) Verifying $\Pi'(36) = C'(36) \neq 0$

Remark. Just disagreeing student A or writing 'No' only without any elaborations receive no credits. Remark. A student who gets (a) or (c) incorrect can get at most 2M here.

Sample solution 1. (Arguing by Profit)

If $\Pi(x)$ attains a maximum at $x = x_0$, Fermat's Theorem implies that $\Pi'(x_0) = 0$ (2M) However, $\Pi'(36) = R'(36) + C'(36) = 0 + C'(36) < 0$ (2M) Therefore, $\Pi(x)$ does not attain a maximum at x = 36. This disproves Student A's claim.

Sample solution 2. (Arguing by Cost)

If $\Pi(x)$ attains a maximum at $x = x_0$, then marginal cost and marginal revenue are equal...(2M) i.e. $R'(x_0) = C'(x_0)$. However, R'(36) = 0 by (a) whereas C'(36) < 0...(2M)

Therefore, $\Pi(x)$ does not attain a maximum at x = 36. This disproves Student A's claim.

6. $f(x) = (x^2 + x)^{\frac{1}{2}}$.

- (a) (10%) Write down the domain of f(x). Find all asymptotes of y = f(x).
- (b) (5%) Compute f'(x). Find interval(s) of increase and interval(s) of decrease of f(x).
- (c) (5%) Compute f''(x). Determine concavity of y = f(x).
- (d) (3%) Sketch the curve y = f(x).

Solution:

(a)

Marking Scheme. Domain : 3 % + Slant asymptote : 3.5 % each Domain :

- 1% Solving $x(x+1) = 0 \Rightarrow x = 0$ or x = -1
- 2% The correct domain

Asymptotes : (at $\pm \infty$ - 3.5% each)

• 1% - for computing
$$a = \lim_{x \to \pm \infty} \frac{f(x)}{x}$$
 correctly

- 1.5% for computing $\lim_{x \to +\infty} (f(x) ax)$ correctly
- 1% for writing down the equation of the asymptote

Remark. Also okay if a student manages to guess an asymptote y = ax + b and check $\lim_{x \to \pm \infty} (f(x) - ax - b) = 0$ directly.

Sample Solution.

(Domain)

The domain of $f = \{x | x^2 + x \ge 0\}$. Let $h(x) = x^2 + x = x(x+1)$. Now we want to determine the sign graph of h(x) We first solve $x^2 + x = 0$, i.e. $x(x+1) = 0 \Rightarrow x = 0$ or x = -1. (1 point) These two points divide the real line into three subintervals $(-\infty, -1) \cup (-1, 0) \cup (0, \infty)$. Evaluate g(-2) = (-2)(-2+1) > 0, g(-0.5) = (-0.5)(-0.5+1) < 0 and g(1) = 1(1+1) > 0. So $g(x) = x^2 + x > 0$ on $(-\infty, -1) \cup (0, \infty)$. So the domain of f is $(-\infty, -1] \cup [0, \infty)$. (2 points)

Note that g is continuous on $(-\infty, -1] \cup [0, \infty)$. There is no vertical asymptote. To find slant asymptotes, we first compute

$$\lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{(x^2 + x)^{\frac{1}{2}}}{x} = \lim_{x \to \infty} \frac{(x^2(1 + \frac{1}{x}))^{\frac{1}{2}}}{x}$$
$$= \lim_{x \to \infty} \frac{x((1 + \frac{1}{x}))^{\frac{1}{2}}}{x} = \lim_{x \to \infty} ((1 + \frac{1}{x}))^{\frac{1}{2}} = 1.$$

(1 point)

Then we compute

$$\lim_{x \to \infty} (x^2 + x)^{\frac{1}{2}} - x$$

=
$$\lim_{x \to \infty} x(1 + \frac{1}{x})^{\frac{1}{2}} - x = \lim_{x \to \infty} x[(1 + \frac{1}{x})^{\frac{1}{2}} - 1]$$

=
$$\lim_{x \to \infty} \frac{[(1 + \frac{1}{x})^{\frac{1}{2}} - 1]}{\frac{1}{x}} = \lim_{h \to 0^+} \frac{[(1 + h)^{\frac{1}{2}} - 1]}{h}$$

=
$$\lim_{h \to 0^+} \frac{[(1 + h)^{\frac{1}{2}} - 1]'}{h'} = \lim_{h \to 0^+} \frac{\frac{1}{2}(1 + h)^{-\frac{1}{2}}}{1}$$

=
$$\frac{1}{2}.$$

(1.5 point)

Thus $\lim_{x \to \infty} (x^2 + x)^{\frac{1}{2}} - (x + \frac{1}{2}) = 0$ or equivalently $y = x + \frac{1}{2}$ is a slant asymptote. (1 point). On the other hand,

$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{(x^2 + x)^{\frac{1}{2}}}{x} = \lim_{x \to -\infty} \frac{(x^2(1 + \frac{1}{x}))^{\frac{1}{2}}}{x}$$
$$= \lim_{x \to -\infty} \frac{-x((1 + \frac{1}{x}))^{\frac{1}{2}}}{x} = \lim_{x \to \infty} -((1 + \frac{1}{x}))^{\frac{1}{2}} = -1.$$

(1 point)

Now we compute

$$\lim_{x \to -\infty} (x^2 + x)^{\frac{1}{2}} + x$$

$$= \lim_{x \to -\infty} -x(1 + \frac{1}{x})^{\frac{1}{2}} + x = \lim_{x \to -\infty} x[-(1 + \frac{1}{x})^{\frac{1}{2}} + 1]$$

$$= \lim_{x \to -\infty} \frac{[-(1 + \frac{1}{x})^{\frac{1}{2}} + 1]}{\frac{1}{x}} = \lim_{h \to 0^{-}} \frac{[-(1 + h)^{\frac{1}{2}} + 1]}{h}$$

$$= \lim_{h \to 0^{-}} \frac{[-(1 + h)^{\frac{1}{2}} + 1]'}{h'} = \lim_{h \to 0^{-}} \frac{-\frac{1}{2}(1 + h)^{-\frac{1}{2}}}{1}$$

$$= -\frac{1}{2}$$

(1.5 point)

Thus $\lim_{x \to -\infty} (x^2 + x)^{\frac{1}{2}} - (-x - \frac{1}{2}) = 0 \text{ and } y = -x - \frac{1}{2} \text{ is also also slant asymptote.}$ (1 point).

(b)

Marking Scheme.2% - correct f'(x)1% - for correctly determining the signs of each sub-intervals1% - for correct interval of increase1% - for the correct interval of decreaseSample solution. $f'(x) = \frac{d}{dx}(x^2 + x)^{\frac{1}{2}} = \frac{1}{2}(x^2 + x)^{-\frac{1}{2}}(2x + 1).$ (2 point)Recall the domain of f is $(-\infty, -1] \cup [0, \infty)$. f'(x) = 0 has no solution in its domain. $f'(-2) = \frac{1}{2}(4-2)^{-\frac{1}{2}}(-4+1) < 0$ and $f'(1) = \frac{1}{2}(1+1)^{-\frac{1}{2}}(2+1) > 0.$..<

(c)

Marking Scheme.

3% - correct f''(x)

2% - for the correct interval/explaining why the curve is always concaving downward

Sample Solution.

Using $f'(x) = \frac{1}{2}(x^2 + x)^{-\frac{1}{2}}(2x + 1)$, we have

$$f''(x) = \frac{1}{2} \left(\left[(x^2 + x)^{-\frac{1}{2}} \right]' (2x+1) + (x^2 + x)^{-\frac{1}{2}} (2x+1)' \right)$$

$$= \frac{1}{2} \left(-\frac{1}{2} (x^2 + x)^{-\frac{3}{2}} (2x+1)^2 + (x^2 + x)^{-\frac{1}{2}} 2 \right)$$

$$= -\frac{1}{4} (x^2 + x)^{-\frac{3}{2}} ((2x+1)^2 - 4(x^2 + x))$$

$$= -\frac{1}{4} (x^2 + x)^{-\frac{3}{2}} (4x^2 + 4x + 1 - 4(x^2 + x))$$

$$= -\frac{1}{4} (x^2 + x)^{-\frac{3}{2}}.$$

(3 point)

(1 point)

Recall the domain of f is $(-\infty, -1] \cup [0, \infty)$ and $x^2 + x > 0$ on $(-\infty, -1) \cup (0, \infty)$. So f''(x) < 0 and f is concave down on $(-\infty, -1) \cup (0, \infty)$. (2 points)

(d)

Marking Scheme.

- 1% appropriate 'ends' (or *x*-intercepts or one-sided vertical tangents)
- 1% the two slant asymptotes
- 1% the shape (increase, decrease, always concaving downward)

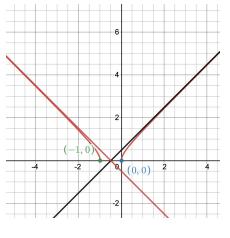
Remark. It's okay that the students do not demonstrate vertical-ness of the one-sided tangents at the points x = 0 and x = -1.

Sample solution.

Note that f(-1) = f(0) = 0.

f is decreasing and concave down on $(-\infty, -1)$. f is increasing and concave down on $(0, \infty)$.

Also, note that $\lim_{x \to -1^-} f'(x) = \lim_{x \to -1^-} \frac{1}{2} (x^2 + x)^{-\frac{1}{2}} (2x + 1) = -\infty$ and. $\lim_{x \to 0^+} f'(x) = \lim_{x \to 0^+} \frac{1}{2} (x^2 + x)^{-\frac{1}{2}} (2x + 1) = \infty$. *f* has a one sided vertical tangent at x = -1 and x = 0



(Slant asymptotes - 1 point) (Correct shape - 1 point)