$$1. \ \, \mathrm{Let} \, \, V = \mathrm{span} \left\{ \begin{bmatrix} 3 \\ -4 \\ -5 \\ -1 \end{bmatrix}, \begin{bmatrix} 4 \\ -2 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} -2 \\ 2 \\ -4 \\ 1 \end{bmatrix} \right\} \, \mathrm{and} \, \, W = \mathrm{span} \left\{ \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 2 \\ 0 \end{bmatrix} \right\}.$$

- (a) (5 pts) Find the dimension of the vector subspace V.
- (b) (5 pts) Find a basis for W. (Hint: a basis is a linearly independent set of vectors that span W)
- (c) (2 pts) Show that V and W are not equal.

Solution:

(a) The dimension is the rank of the matrix $\begin{bmatrix} 3 & 1 & 3 & 1 \\ 4 & -2 & -2 & 1 \\ 1 & 3 & 2 & 3 \\ 2 & 2 & 4 & 1 \end{bmatrix}$. We find the rank of the matrix

via Gaussian elimination.

$$\begin{bmatrix} 3 & -4 & -5 & -1 \\ 4 & -2 & -2 & 1 \\ 1 & 3 & 2 & 3 \\ -2 & 2 & -4 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 3 & 2 & 3 \\ -2 & 2 & -4 & 1 \\ 3 & -4 & -5 & -1 \\ 4 & -2 & -2 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 3 & 2 & 3 \\ 0 & 8 & 0 & 7 \\ 0 & -13 & -11 & -10 \\ 0 & -14 & -10 & -11 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 3 & 2 & 3 \\ 0 & 1 & 0 & \frac{7}{8} \\ 0 & 0 & -11 & \frac{11}{8} \\ 0 & 0 & -10 & \frac{10}{8} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 2 & 3 \\ 0 & 1 & 0 & \frac{7}{8} \\ 0 & 0 & 1 & \frac{-1}{8} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The dimension of V is 3.

Alternative methods for (a):

The determinant can be used to determine whether the matrix is full rank.

$$\det\begin{bmatrix} 3 & -4 & -5 & -1 \\ 4 & -2 & -2 & 1 \\ 1 & 3 & 2 & 3 \\ -2 & 2 & -4 & 1 \end{bmatrix} = 3 \det\begin{bmatrix} -2 & -2 & 1 \\ 3 & 2 & 3 \\ 2 & -4 & 1 \end{bmatrix} + 4 \det\begin{bmatrix} 4 & -2 & 1 \\ 1 & 2 & 3 \\ -2 & -4 & 1 \end{bmatrix} - 5 \det\begin{bmatrix} 4 & -2 & 1 \\ 1 & 3 & 3 \\ -2 & 2 & 1 \end{bmatrix} + \det\begin{bmatrix} 4 & -2 & -2 \\ 1 & 3 & 2 \\ -2 & 2 & -4 \end{bmatrix}$$

$$= 3(-4-12-12-4-24+6)+4(8+12-4+4+48+2)-5(12+12+2+6-24+2)+(-48+8-4-12-16-8)$$
$$= -150+280-50-80=0$$

The rank of the matrix is 4 minus the dimension of the 0-eigenspace (which is found using

Gaussian elimination). The eigenvectors for $\lambda = 0$ are $\begin{bmatrix} -7 \\ 1 \end{bmatrix} t$, for all t. So the dimension of V is

3.

They can also find the number of non-zero eigenvalues via the characteristic polynomial, which is $\lambda^4 - 4\lambda^3 + 34\lambda^2 - 11\lambda$. So the dimension of V is 3.

Here we also provide the Gaussian elimination without reordering if graders need to check for mistakes.

$$\begin{bmatrix} 3 & -4 & -5 & -1 \\ 4 & -2 & -2 & 1 \\ 1 & 3 & 2 & 3 \\ -2 & 2 & -4 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & \frac{-4}{3} & \frac{-5}{3} & \frac{-1}{3} \\ 0 & 10 & 14 & 7 \\ 0 & 13 & 11 & 10 \\ 0 & -2 & -22 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & \frac{-4}{3} & \frac{-5}{3} & \frac{-1}{3} \\ 0 & 1 & 1.4 & 0.7 \\ 0 & 0 & -72 & 9 \\ 0 & 0 & -96 & 12 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & \frac{-4}{3} & \frac{-5}{3} & \frac{-1}{3} \\ 0 & 1 & 1.4 & 0.7 \\ 0 & 0 & 1 & \frac{-1}{8} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

And transposed.

$$\begin{bmatrix} 3 & 4 & 1 & -2 \\ -4 & -2 & 3 & 2 \\ -5 & -2 & 2 & -4 \\ -1 & 1 & 3 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & \frac{4}{3} & \frac{1}{3} & \frac{-2}{3} \\ 0 & 10 & 13 & -2 \\ 0 & 7 & 10 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & \frac{4}{3} & \frac{1}{3} & \frac{-2}{3} \\ 0 & 1 & 1.3 & -0.2 \\ 0 & 0 & -72 & -192 \\ 0 & 0 & 9 & 24 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & \frac{4}{3} & \frac{1}{3} & \frac{-2}{3} \\ 0 & 1 & 1.3 & -0.2 \\ 0 & 0 & 1 & \frac{8}{3} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

(b) We find a basis of W via Gaussian elimination.

$$\begin{bmatrix} 1 & 1 & -1 & -1 \\ 1 & -2 & -2 & 1 \\ 1 & 1 & 1 & 1 \\ -1 & 1 & 2 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & -1 & -1 \\ 0 & -3 & -1 & 2 \\ 0 & 0 & 2 & 2 \\ 0 & 2 & 1 & -1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & -1 & -1 \\ 0 & 1 & \frac{1}{3} & \frac{-2}{3} \\ 0 & 0 & 2 & 2 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & -1 & -1 \\ 0 & 1 & \frac{1}{3} & \frac{-2}{3} \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The vectors
$$\begin{bmatrix} 1\\1\\-1\\-1 \end{bmatrix}$$
, $\begin{bmatrix} 0\\3\\1\\-2 \end{bmatrix}$, form a basis of W . Because we didn't switch the rows, $\begin{bmatrix} 1\\1\\-1\\-1 \end{bmatrix}$, $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$ also form a basis of W .

Alternative methods for (b):

If we start by checking whether the four vectors are linearly independent by definition, we would be solving a system of equations.

$$\begin{cases} x + y + z - w = 0 \\ x - 2y + z + w = 0 \\ -x - 2y + z + 2w = 0 \end{cases} \xrightarrow{w=x+y+z} \begin{cases} 2x - y + 2z = 0 \\ x + 3z = 0 \\ -x + y + z = 0 \end{cases} \xrightarrow{x=y+z} \begin{cases} y + 4z = 0 \\ y + 4z = 0 \end{cases}$$

So x = 3, y = 4, z = -1, w = 6 is a nonzero solution. The four vectors are linearly dependent. We can then check if three of them would be linearly independent.

$$\begin{cases} x + y + z = 0 \\ x - 2y + z = 0 \\ -x - 2y + z = 0 \\ -x + y + z = 0 \end{cases} \xrightarrow{x=y+z} \begin{cases} 2y + 2z = 0 \\ -y + 2z = 0 \\ -3y = 0 \end{cases}$$

Hence
$$x = 0, y = 0, z = 0$$
 is the only solution. The three vectors $\begin{bmatrix} 1\\1\\-1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\-2\\-2\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$ are linearly independent and form a basis of W .

(c) From the results of the Gaussian elimination we can see that the vector (0,0,1,1) is in W but not in V.

Alternative methods for (c):

Since both vector subspaces are 3-dimensional, we can check whether they have the same

eigenvectors for
$$\lambda = 0$$
. The vector $\begin{bmatrix} -5 \\ -7 \\ 1 \\ 8 \end{bmatrix}$ is an eigenvector for V and the vector $\begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}$ is an eigenvector for W , not parallel.

We can also add a vector from V to W and show that the vector subspace would become 4-dimensional.

$$\begin{bmatrix}
1 & 1 & -1 & -1 \\
1 & -2 & -2 & 1 \\
1 & 1 & 1 & 1 \\
1 & 3 & 2 & 3
\end{bmatrix}
\longrightarrow
\begin{bmatrix}
1 & 1 & -1 & -1 \\
0 & -3 & -1 & 2 \\
0 & 0 & 2 & 2 \\
0 & 2 & 3 & 4
\end{bmatrix}
\longrightarrow
\begin{bmatrix}
1 & 1 & -1 & -1 \\
0 & -3 & -1 & 2 \\
0 & 0 & 1 & 1 \\
0 & 0 & 7 & 14
\end{bmatrix}
\longrightarrow
\begin{bmatrix}
1 & 1 & -1 & -1 \\
0 & -3 & -1 & 2 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 7
\end{bmatrix}$$

Grading:

- (a) No points if the method is wrong. 2 points if they only showed that $\dim(V) \neq 4$ (by determinant). 1 point off for each minor mistake (algebra, miscopy). 2 points off for each major mistake (inventing row operations). Do not take more points off for wrong answer if it is a result of mistakes.
- (b) 3 points for finding a basis. 2 points for whether their work showed linearly independence. Similar to (a), the work is more important than the answer.
- (c) Depends on work shown in (a) and (b). Full credit or no credit.

Note:

For (a) and (b) if a minor mistake does not affect the answers, the grader may choose to take 0.5 off instead.

Because of the follow-through rule, they are allowed to say V and W are not equal due to dimension if they made a mistake in (a) or (b).

2. Let
$$A = \begin{bmatrix} -1 & 3 & 1 \\ 3 & -1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
.

(a) (8 pts) Find the eigenvalues of A and corresponding eigenvectors given that $\det(A - \lambda I_3) = -\lambda^3 - \lambda^2 + 12\lambda$.

(b) (4 pts) Diagonalize A. That is, find an orthogonal matrix P (i.e. $P^TP = I_3$) and a diagonal matrix D such that $P^TAP = D$.

(c) (4 pts) Determine whether $A + 5I_3$ is positive definite, negative definite, or indefinite.

(d) (4 pts) Determine whether $A - 5I_3$ is positive definite, negative definite, or indefinite.

Solution:

D.

(a) $\det(A - \lambda I_3) = -\lambda^3 - \lambda^2 + 12\lambda = -\lambda(\lambda^2 + \lambda - 12) = -\lambda(\lambda - 3)(\lambda + 4)$. Eigenvalues are 0, 3, -4. The eigenvectors corresponding to each:

$$\lambda = 0 \longrightarrow A - \lambda I_3 = \begin{bmatrix} -1 & 3 & 1 \\ 3 & -1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \longrightarrow \begin{cases} -x + 3y + z = 0 \\ 3x - y + z = 0 \\ x + y + z = 0 \end{cases} \xrightarrow{x=3y+z} \begin{cases} 8y + 4z = 0 \\ 4y + 2z = 0 \end{cases} \longrightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix} t$$

$$\lambda = 3 \longrightarrow A - \lambda I_3 = \begin{bmatrix} -4 & 3 & 1 \\ 3 & -4 & 1 \\ 1 & 1 & -2 \end{bmatrix} \longrightarrow \begin{cases} -4x + 3y + z = 0 \\ 3x - 4y + z = 0 \\ x + y - 2z = 0 \end{cases} \xrightarrow{x = -y + 2z} \begin{cases} 7y - 7z = 0 \\ -7y + 7z = 0 \end{cases} \longrightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} t$$

$$\lambda = -4 \longrightarrow A - \lambda I_3 = \begin{bmatrix} 3 & 3 & 1 \\ 3 & 3 & 1 \\ 1 & 1 & 5 \end{bmatrix} \longrightarrow \begin{cases} 3x + 3y + z = 0 \\ 3x + 3y + z = 0 \\ x + y + 5z = 0 \end{cases} \xrightarrow{z = -3x - 3y} \left\{ -2x - 2y = 0 \right\} \longrightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} t$$

(b) Hence if $P = \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} \\ \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \end{bmatrix}$ and $D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -4 \end{bmatrix}$, then P is orthogonal and $P^TAP = \frac{1}{\sqrt{6}} = \frac{1}{\sqrt{6}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3$

(c) $A+5I_3=\begin{bmatrix} 4&3&1\\3&4&1\\1&1&6 \end{bmatrix}$ is Positive Definite. The eigenvalues of $A+5I_3$ are 1,5,8, all positive. \square

They can also convert to $\mathbf{v}^T(A+5I_3)\mathbf{v}=4x^2+4y^2+6z^2+6xy+2xz+2yz$ and complete the squares:

$$4x^{2} + 4y^{2} + 6z^{2} + 6xy + 2xz + 2yz = 3(x+y)^{2} + (x+z)^{2} + (y+z)^{2} + 4z^{2} \ge 0$$

Or use Sylvester's criterion for the matrix $A + 5I_3 = \begin{bmatrix} 4 & 3 & 1 \\ 3 & 4 & 1 \\ 1 & 1 & 6 \end{bmatrix}$.

 $\det A_1 = 4 > 0$, $\det A_2 = 16 - 9 = 7 > 0$, $\det A_3 = 96 + 3 + 3 - 4 - 4 - 54 = 40 > 0$.

(d)
$$A - 5I_3 = \begin{bmatrix} -6 & 3 & 1 \\ 3 & -6 & 1 \\ 1 & 1 & -4 \end{bmatrix}$$
 is Negative Definite. The eigenvalues of $A - 5I_3$ are $-9, -5, -2$, all negative.

They can also convert to $\mathbf{v}^T(A-5I_3)\mathbf{v} = -6x^2-6y^2-4z^2+6xy+2xz+2yz$ and complete the squares:

$$-6x^2 - 6y^2 - 4z^2 + 6xy + 2xz + 2yz = -3(x+y)^2 - (x+z)^2 - (y+z)^2 - 2x^2 - 2y^2 - 2z^2 \le 0$$

Or use Sylvester's criterion for the matrix $A - 5I_3 = \begin{bmatrix} -6 & 3 & 1 \\ 3 & -6 & 1 \\ 1 & 1 & -4 \end{bmatrix}$.

$$\det A_1 = -6 < 0, \ \det A_2 = 36 - 9 = 27 > 0, \ \det A_3 = -144 + 3 + 3 + 6 + 6 + 36 = -90 > 0. \ \Box$$

Grading:

- (a) 2 points for eigenvalues. 2 points for each corresponding eigenvector.
- (b) 3 points for P and 1 point for D.
- (c) 1 point for the correct conclusion. 3 points for justifying their result.
- (d) 1 point for the correct conclusion. 3 points for justifying their result.

In general, 1 point off for each minor mistake (algebra, miscopy). 2 points off for each major mistake (inventing new math).

If they get a zero vector as eigenvector, then they get no points for the eigenvector AND lose points for (b).

- 3. Maximize f(x, y, z) = yz subject to x + z = 1, $x^2 + y^2 \le 6$, $z \ge 0$.
 - (a) (4 pts) Check whether the NDCQ is satisfied.
 - (b) (8 pts) Write out the Lagrangian function and the first order conditions.
 - (c) (8 pts) Solve the constrained optimization problem given that the constraints form a closed and bounded region.

Solution:

(a) The equality constraint is h(x, y, z) = x + z = 1. The inequality constraints are $g_1(x, y, z) = x^2 + y^2 \le 6$ and $g_2(x, y, z) = -z \le 0$. $\nabla h = (1, 0, 1), \nabla g_1(x, y, z) = (2x, 2y, 0)$, and $\nabla g_2(x, y, z) = (0, 0, -1)$ (2 pt)

If both g_1 and g_2 are binding, then z=0, x=1, and $y=\pm\sqrt{5}$. In this case, $\nabla h=(1,0,1)$, $\nabla g_1=(2,\pm2\sqrt{5},0)$ and $\nabla g_2=(0,0,-1)$ are linearly independent. (0.5 pt)

If only g_1 is binding, then $x^2 + y^2 = 6$ and $\nabla g_1(x, y, z) = (2x, 2y, 0) \neq (0, 0, 0)$. In this case, $\nabla h = (1, 0, 1)$ and $\nabla g_1 = (2x, 2y, 0)$ are linearly independent. (0.5 pt)

If only g_2 is binding, then z = 0, x = 1. In this case, $\nabla h = (1,0,1)$ and $\nabla g_2 = (0,0,-1)$ are linearly independent. (0.5 pt)

If neither g_1 nor g_2 are binding, then we just need to check $\nabla h = (1, 0, 1)$ which is not (0, 0, 0). (0.5 pt)

The above discussion shows that on the constraint set, ∇h and gradient(s) of binding inequality constraint(s) are linearly independent. Hence the NDCQ is satisfied.

(b) Lagrangian function $L(x, y, z, \mu, \lambda_1, \lambda_2) = yz - \mu(x + z - 1) - \lambda_1(x^2 + y^2 - 6) + \lambda_2 z$. (1 pt) First order conditions:

$$L_{x} = -\mu - 2x\lambda_{1} = 0 \quad (1pt)$$

$$L_{y} = z - 2y\lambda_{1} = 0 \quad (1pt)$$

$$L_{z} = y - \mu + \lambda_{2} = 0 \quad (1pt)$$

$$\lambda_{1}L_{\lambda_{1}} = \lambda_{1}(6 - x^{2} - y^{2}) = 0 \quad (1pt)$$

$$\lambda_{2}z = 0 \quad (1pt)$$

$$1 - x - z = 0, \quad x^{2} + y^{2} \le 6, \quad z \ge 0 \quad (1pt)$$

$$\lambda_{1} \ge 0, \quad \lambda_{2} \ge 0 \quad (1pt)$$

(c) Since f(x, y, z) = yz is zero when z = 0, we can assume z > 0 and $\lambda_2 = 0$. (1 pt for ruling out the case $\lambda_2 > 0$.)

Now we have $\mu + 2x\lambda_1 = 0$, $2y\lambda_1 = z$, $y = \mu$, x + z = 1, $\lambda_1(6 - x^2 - y^2) = 0$.

If $\lambda_1 = 0$, then $x = 1, y = 0, z = 0, \mu = 0$ and f(1, 0, 0) = 0. (1 pt for the case $\lambda_1 = 0$.)

If $\lambda_1 \neq 0$, then $x^2 + y^2 = 6$. Replace μ and z to get $2x\lambda_1 + y = 0$, $2y\lambda_1 = 1 - x$. Hence $2xy\lambda_1 = -y^2 = x - x^2$. So we get $2x^2 - x - 6 = (2x + 3)(x - 2) = 0$.

If x = 2, then z = -1 (not valid). If $x = \frac{-3}{2}$, then $z = \frac{5}{2}$. Then we get $y = \mu = \frac{\sqrt{15}}{2}$, $\lambda_1 = \frac{5}{2\sqrt{15}}$.

(If y is negative then $\lambda_1 < 0$.) The solution satisfies all our conditions.

(5 pts for the case $\lambda_1 > 0$ and the complete solution (x^*, y^*, z^*) and μ^*, λ_1 .)

The maximum of
$$f(x, y, z) = yz$$
 is $\frac{5\sqrt{15}}{4}$ at $\left(\frac{-3}{2}, \frac{\sqrt{15}}{2}, \frac{5}{2}\right)$. (1 pt)

- 4. Suppose that you keep t hours a day as leisure time and 16-t hours to tutor with wage 400 dollars per hour. Your daily budget is 200+400(16-t) and you spend money on food and clothes with prices 250 and 350, respectively, per unit. If you consume x units of food and y units of clothes, then your utility function U(x,y,t) depends on x, y and hours of leisure time t, where $\frac{\partial U}{\partial x} > 0$, $\frac{\partial U}{\partial y} > 0$, and $\frac{\partial U}{\partial t} > 0$. Now you want to maximize U(x,y,t) under the constraints $250x + 350y \le 200 + 400(16-t)$, $t \le 16$, $t \ge 0$, $x \ge 0$, $y \ge 0$.
 - (a) (8 pts) Write down the Kuhn-Tucker Lagrangian function, $\tilde{L}(x, y, t, \lambda_1, \lambda_2)$, and the first order conditions in the Kuhn-Tucker formulation.
 - (b) (4 pts) Show that if (x^*, y^*, t^*) is a maximizer, then the constraint $250x+350y \le 200+400(16-t)$ is binding at (x^*, y^*, t^*) .
 - (c) (6 pts) Show that if (x^*, y^*, t^*) is a maximizer satisfying $x^* > 0$, $y^* > 0$, and $0 < t^* < 16$, then

$$\frac{\partial U}{\partial t}(x^*,y^*,t^*)\frac{1}{400} = \frac{\partial U}{\partial x}(x^*,y^*,t^*)\frac{1}{250} = \frac{\partial U}{\partial y}(x^*,y^*,t^*)\frac{1}{350}.$$

Solution:

(a) $\tilde{\mathcal{L}}(x, y, t, \lambda_1, \lambda_2) = U(x, y, t) - \lambda_1(250x + 350y - 200 - 400(16 - t)) - \lambda_2(t - 16)$ (1 pt) At the maximizer (x^*, y^*, t^*) , there are λ_1^* and λ_2^* s.t.

1.
$$\frac{\partial \tilde{L}}{\partial x} = \frac{\partial U}{\partial x} (x^*, y^*, t^*) - 250\lambda_1^* \le 0$$

$$\frac{\partial \tilde{L}}{\partial y} = \frac{\partial U}{\partial y} (x^*, y^*, t^*) - 350\lambda_1^* \le 0$$

$$\frac{\partial \tilde{L}}{\partial t} = \frac{\partial U}{\partial t} (x^*, y^*, t^*) - 400\lambda_1^* - \lambda_2^* \le 0 \text{ (2 pts)}$$

2.
$$x^* \frac{\partial \tilde{L}}{\partial x} = x^* \left(\frac{\partial U}{\partial x} (x_1^*, x_2^*, t^*) - 250\lambda_1^* \right) = 0$$
$$y^* \frac{\partial \tilde{L}}{\partial y} = y^* \left(\frac{\partial U}{\partial y} (x^*, y^*, t^*) - 350\lambda_1^* \right) = 0$$
$$t^* \frac{\partial \tilde{L}}{\partial t} = t^* \left(\frac{\partial U}{\partial t} (x^*, y^*, t^*) - 400\lambda_1^* - \lambda_2^* \right) = 0 \text{ (2 pts)}$$

3.
$$\frac{\partial \tilde{L}}{\partial \lambda_1} = -250x^* - 350y^* + 200 + 400(16 - t^*) \ge 0, \ \frac{\partial \tilde{L}}{\partial \lambda_2} = -t^* + 16 \ge 0 \ (1 \text{ pt})$$

4.
$$\lambda_1^* \frac{\partial \tilde{L}}{\partial \lambda_1} = \lambda_1^* (-250x^* - 350y^* + 200 + 400(16 - t^*)) = 0, \ \lambda_2^* \frac{\partial \tilde{L}}{\partial \lambda_2} = \lambda_2^* (-t^* + 16) = 0 \ (1 \text{ pt})$$

5. $\lambda_1^* \ge 0$ and $\lambda_2^* \ge 0$ (1 pt)

(Students get full credits about the FOC with $(x, y, t), \lambda_1, \lambda_2$ instead of $(x^*, y^*, t^*), \lambda_1^*, \lambda_2^*$.)

- (b) If $250x^* + 350y^* < 200 + 400(16 t^*)$, then $\lambda_1^* = 0$ (1 pt) However, this implies that $\frac{\partial U}{\partial x}(x^*, y^*, t^*) \le 0$ and $\frac{\partial U}{\partial y}(x^*, y^*, t^*) \le 0$. (2 pts) This contradicts the assumptions that $\frac{\partial U}{\partial x}, \frac{\partial U}{\partial x} > 0$. (1 pt) Hence we must have $250x^* + 350y^* = 200 + 400(16 - t^*)$.
- (c) Since $t^* < 16$, we have $\lambda_2^* = 0$ (1 pt). Because $x^* > 0, y^* > 0$, we derive $\frac{\partial U}{\partial x}(x^*, y^*, t^*) - 250\lambda_1^* = 0$ and $\frac{\partial U}{\partial y}(x^*, y^*, t^*) - 350\lambda_1^* = 0$.

(2 pts)
Also, $0 < t^*$ implies that $\frac{\partial U}{\partial t}(x^*, y^*, t^*) - 400\lambda_1^* - \lambda_2^* = \frac{\partial U}{\partial t}(x^*, y^*, t^*) - 400\lambda_1^* = 0$ (1 pt)
Thus at the maximizer (x^*, y^*, t^*) , $\frac{\partial U}{\partial x} \frac{1}{250} = \frac{\partial U}{\partial y} \frac{1}{350} = \frac{\partial U}{\partial t} \frac{1}{400} = \lambda_1^*$ (2 pts)

- 5. Consider the problem of maximizing f(x, y, z) = xyz subject to 2x + y + z = 18, and x + 2y + z = 18.
 - (a) (1 pts) Write down the Lagrangian function for this problem, $L(x, y, z, \mu_1, \mu_2)$, where μ_1 and μ_2 are the Lagrange multipliers.

Solution:

Grading scheme: 1 pt for the correct answer no partial credit for this part.

Solution: The Lagrangian function is

$$L(x, y, z, \mu_1, \mu_2) = xyz - \mu_1(2x + y + z - 18) - \mu_2(x + 2y + z - 18).$$

(b) (2 pts) Check whether the NDCQ is satisfied.

Solution:

Grading scheme: 0.75 pt for computing ∇h_1 , 0.75 pt for computing ∇h_2 , 0.5 pt for stating the rank is 2.

Solution: We have two constraint equalities $h_1(x, y, z) = 2x + y + z = 18$ and $h_2(x, y, z) = x + 2y + z = 18$. $\begin{bmatrix} \nabla h_1 \\ \nabla h_2 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix}$. The rank of $\begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix}$ iis 2. So NDCQ is satisfied.

(c) (4 pts) Write down the first order conditions for this problem.

Solution:

Grading scheme: 0.8 pt for each part

Solution: We have to compute

$$\frac{\partial L}{\partial x} = yz - 2\mu_1 - \mu_2 = 0$$

$$\frac{\partial L}{\partial y} = xz - \mu_1 - 2\mu_2 = 0$$

$$\frac{\partial L}{\partial z} = xy - \mu_1 - \mu_2 = 0$$

$$\frac{\partial L}{\partial \mu_1} = -(2x + y + z - 18) = 0$$

$$\frac{\partial L}{\partial \mu_2} = -(x + 2y + z - 18) = 0$$

(d) (7 pts) Show that the solution of the first order conditions are $(x, y, z, \mu_1, \mu_2) = (4, 4, 6, 8, 8)$ or $(x, y, z, \mu_1, \mu_2) = (0, 0, 18, 0, 0)$. (You have to show your steps to get complete credits).

Solution:

Grading scheme: There are two solution. Each solution 3.5 point. Given partial credit accordingly.

Solution: We have $xyz - (2\mu_1 + \mu_2)x = xyz - (\mu_1 + 2\mu_2)y = xyz - (\mu_1 + \mu_2)z = 0$. Using 2x + y + z = 18 and x + 2y + z = 18, we add previous three equations to get

$$3xyz = \mu_1(2x + y + z) + \mu_2(x + 2y + z) = 18(\mu_1 + \mu_2).$$

From $xyz - (\mu_1 + \mu_2)z = 0$ and $xyz = 6(\mu_1 + \mu_2)$ we have z = 6 if $\mu_1 + \mu_2 \neq 0$. Now 2x + y = 12 and x + 2y = 12. Then x = 4 and y = 4. Then $2\mu_1 + \mu_2 = 24$ and $\mu_1 + \mu_2 = 16$. Then $\mu_1 = 8$ and $\mu_2 = 8$. So $(x, y, z, \mu_1, \mu_2) = (4, 4, 6, 8, 8)$.

If $\mu_1 + \mu_2 = 0$ then xyz = 0. Hence x = 0, y = 0 or z = 0. If x = 0 then $\mu_1 + 2\mu_2 = 0$, $\mu_1 + \mu_2 = 0$. This gives $\mu_1 = \mu_2 = 0$. If x = 0 then y + z = 18 and 2y + z = 18. Thus y = 0 z = 18 Thus $(x, y, z, \mu_1, \mu_2) = (0, 0, 18, 0, 0)$.

If y = 0 then $\mu_1 = \mu_2 = 0$, x = 0, z = 18. Thus $(x, y, z, \mu_1, \mu_2) = (0, 0, 18, 0, 0)$ If z = 0 then $\mu_1 = \mu_2 = 0$, y = 6, x = 6. But this doesn't satisfy xy = 0.

(e) (7 pts) Check the second order conditions at $(x, y, z, \mu_1, \mu_2) = (4, 4, 6, 8, 8)$ and $(x, y, z, \mu_1, \mu_2) = (0, 0, 18, 0, 0)$. Show that (4, 4, 6) a local maximizer and (0, 0, 18) is a local minimizer.

Solution:

Grading scheme: There are two solution. Each solution 3.5 point. Given partial credit accordingly.

Solution:

The constraint equations are $h_1(x, y.z) = 2x + y + z = 18$ and $h_2(x, y.z) = x + 2y + z = 18$ $\nabla h_1 = (2, 1, 1) \text{ and } \nabla h_2 = (1, 2, 1). \quad rank \begin{bmatrix} \nabla h_1 \\ \nabla h_2 \end{bmatrix} = rank \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix} = 2. \text{ So NDCQ holds.}$

Recall

$$\begin{split} \frac{\partial L}{\partial x} &= yz - 2\mu_1 - \mu_2 = 0 \\ \frac{\partial L}{\partial y} &= xz - \mu_1 - 2\mu_2 = 0 \\ \frac{\partial L}{\partial z} &= xy - \mu_1 - \mu_2 = 0 \end{split}$$

We have

$$\begin{array}{lll} \frac{\partial^2 L}{\partial x^2} & = & 0, & \frac{\partial^2 L}{\partial x \partial y} = z, & \frac{\partial^2 L}{\partial x \partial z} = y \\ \frac{\partial^2 L}{\partial y^2} & = & 0, & \frac{\partial^2 L}{\partial y \partial z} = x, & \frac{\partial^2 L}{\partial z^2} = 0. \end{array}$$

So the bordered hessian matrix of Lagrangian is $H = \begin{bmatrix} 0 & 0 & 2 & 1 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 2 & 1 & 0 & z & y \\ 1 & 2 & z & 0 & x \\ 1 & 1 & y & x & 0 \end{bmatrix}$

At
$$(x, y, z, \mu_1, \mu_2) = (4, 4, 6, 8, 8)$$
, we have $H = \begin{bmatrix} 0 & 0 & 2 & 1 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 2 & 1 & 0 & 6 & 4 \\ 1 & 2 & 6 & 0 & 4 \\ 1 & 1 & 4 & 4 & 0 \end{bmatrix}$

Now n = 3 k = 2. 2k + 1 = 5 n + k = 5.

We just need to compute
$$H_5 = det(H) = det \begin{bmatrix} 0 & 0 & 2 & 1 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 2 & 1 & 0 & 6 & 4 \\ 1 & 2 & 6 & 0 & 4 \\ 1 & 1 & 4 & 4 & 0 \end{bmatrix} = det \begin{bmatrix} 0 & 0 & 2 & 1 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & -1 & -8 & -2 & 4 \\ 0 & 1 & 2 & -4 & 4 \\ 1 & 1 & 4 & 4 & 0 \end{bmatrix}$$

$$= det \begin{bmatrix} 0 & 2 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ -1 & -8 & -2 & 4 \\ 1 & 2 & -4 & 4 \end{bmatrix} = det \begin{bmatrix} 0 & 2 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & -6 & -6 & 8 \\ 1 & 2 & -4 & 4 \end{bmatrix} = (-1) \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ -6 & -6 & 8 \end{bmatrix} = (-1) \begin{bmatrix} 0 & -3 & -1 \\ 1 & 2 & 1 \\ 0 & 6 & 14 \end{bmatrix} =$$

$$\begin{bmatrix} -3 & -1 \\ 6 & 14 \end{bmatrix} = -36 < 0$$

$$(-1)^k = 1 \ (-1)^n = -1.$$
 So it is negative definite and it is a local maximizer.

At
$$(x, y, z, \mu_1, \mu_2) = (0, 0, 18, 0, 0)$$
, we have $H = \begin{bmatrix} 0 & 0 & 2 & 1 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 2 & 1 & 0 & 18 & 0 \\ 1 & 2 & 18 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{bmatrix}$

$$det H = det \begin{bmatrix} 0 & 0 & 2 & 1 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 2 & 1 & 0 & 18 & 0 \\ 1 & 2 & 18 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{bmatrix} = det \begin{bmatrix} 0 & 0 & 2 & 1 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & -1 & 0 & 18 & 0 \\ 0 & 1 & 18 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{bmatrix} = det \begin{bmatrix} 0 & 2 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ -1 & 0 & 18 & 0 \\ 1 & 18 & 0 & 0 \end{bmatrix} = det \begin{bmatrix} 0 & 2 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ -1 & 0 & 18 & 0 \\ 1 & 18 & 0 & 0 \end{bmatrix} = det \begin{bmatrix} 0 & 2 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 18 & 18 & 0 \\ 1 & 18 & 0 & 0 \end{bmatrix}$$
$$= (-1)det \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 18 & 18 & 0 \end{bmatrix} = (-18)det \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \end{bmatrix} = (-18)det \begin{bmatrix} 0 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$= (-1)det \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 18 & 18 & 0 \end{bmatrix} = (-18)det \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \end{bmatrix} = (-18)det \begin{bmatrix} 0 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$= (-18)\det\begin{bmatrix} -1 & 1\\ 1 & 1 \end{bmatrix} = 36.$$

Now k = 2. $(-1)^k = 1 > 0$. So it is positive definite and it is a local minimizer.

(f) (1 pt) Does f(x, y, z) = xyz have a global maximum or global minimum subject to 2x+y+z=18, and x + 2y + z = 18?

Solution:

Grading scheme: 0.3 point for finding the parametric equation of the line. 0.3 pt for finding f in one variable. 0.4 point to explain f goes to ∞ as the point goes to ∞ .

Solution: The constraint set 2x + y + z = 18, and x + 2y + z = 18 is a line. First, we have 2x + y + z - 2(x + 2y + z) = 18 - 36, i.e. -3y - z = -18. Hence z = -3y + 18, x = 18 - 2y - z = -1818 - 2y + 3y - 18 = y. Thus the constraint set can be expresses ad x = y, z = -3y + 18. $f(x,y,z) = y \cdot y \cdot (-3y + 18) = -3y^3 + 18y^2$ on the constraint set. $\lim_{x \to \infty} f(x,y,z) = y \cdot y \cdot (-3y + 18) = -3y^3 + 18y^2$ on the constraint set. $\lim_{x \to \infty} f(x,y,z) = y \cdot y \cdot (-3y + 18) = -3y^3 + 18y^2$ on the constraint set.

So f doesn't have a global maximum and a global minimum.

(g) (4 pts) Estimate the value of the local maximum of the following function f(x,y,z) = xyzsubject to 2x + y + z = 18.1, and x + 2y + z = 18.2.

Solution:

Grading scheme: One point for setting up the right problem.

One point for pointing $\frac{\partial f(x^*(a_1, a_2), y^*(a_1, a_2), z^*(a_1, a_2))}{\partial a_1} = \mu_1^*(a_1, a_2)$ and one point for pointing $\frac{\partial f(x^*(a_1, a_2), y^*(a_1, a_2), z^*(a_1, a_2))}{\partial a_2} = \mu_2^*(a_1, a_2)$. One point for getting the right answer.

Solution: $(x^*(a_1, a_2), y^*(a_1, a_2), z^*(a_1, a_2), \mu_1^*(a_1, a_2), \mu_2^*(a_1, a_2))$ be the local maximizer and the multipliers of the following function.

Let f(x, y, z, a) = xyz subject to $h_1(x, y, z) = 2x + y + z = 18 + a_1$ and $x + 2y + z = 18 + a_2$. We have

$$(x^*(0,0),y^*(0,0),z^*(0,0),\mu_1^*(0,0),\mu_2^*(0,0))=(4,4,6,8,8)$$

We have

$$\frac{\partial f(x^*(a_1, a_2), y^*(a_1, a_2), z^*(a_1, a_2))}{\partial a_1} = \mu_1^*(a_1, a_2) \text{ and}$$
$$\frac{\partial f(x^*(a_1, a_2), y^*(a_1, a_2), z^*(a_1, a_2))}{\partial a_2} = \mu_2^*(a_1, a_2).$$

Thus

$$\frac{\partial f(x^*(a_1, a_2), y^*(a_1, a_2), z^*(a_1, a_2))}{\partial a_1}\Big|_{(0,0)} = \mu_1^*(0,0) = 8 \text{ and}$$

$$\frac{\partial f(x^*(a_1, a_2), y^*(a_1, a_2), z^*(a_1, a_2))}{\partial a_2} = \mu_2^*(0,0) = 8.$$

Thus

$$f(x^*(0.1, 0.2), y^*(0.1, 0.2), z^*(0.1, 0.2))$$

$$\approx f(x^*(0, 0), y^*(0, 0), z^*(0, 0) + \mu_1^*(0, 0) \cdot 0.1 + \mu_2^*(0, 0) \cdot 0.2$$

$$= 96 + 0.8 + 1.6 = 98.4$$

(h) (4 pts) Estimate the value of the local maximum of the following function f(x, y, z) = xyz + 0.1xsubject to 2x + y + 1.1z = 18, and x + 2y + z = 18.1.

Solution:

Grading scheme: One point for setting up the right problem. One point for getting the Lagrangian $L(x, y, z, \mu_1, \mu_2, a) = xyz + ax - \mu_1(2x + y + (1 + a)z - 18) - \mu_2(x + 2y + z - 18 - a)$

One points for computing the right $\frac{\partial L}{\partial a}$. One point for getting the right answer. Solution: Let f(x, y, z, a) = xyz + ax, $h_1(x, y, z, a) = 2x + y + (1 + a)z = 18$ and x + 2y + z = 18 + a. Let $(x^*(a), y^*(a), z^*(a), \mu_1^*(a), \mu_2^*)$ be the local maximizer and the multipliers of the following function Let f(x, y, z, a) = xyz + ax subject to $h_1(x, y, z, a) = 2x + y + (1 + a)z = 18$ and x + 2y + z = 18 + a.

We know that $(x^*(0), y^*(0), z^*(0), \mu_1^*(0), \mu_2^*(0)) = (4, 4, 6, 8, 8).$

We also have
$$\frac{df((x^*(a), y^*(a), z^*(a), a)}{da} = \frac{\partial L}{\partial a}(x^*(a), y^*(a), z^*(a), \mu_1^*(a), \mu_2^*(a), a)$$

Note that

$$L(x,y,z,\mu_1,\mu_2,a) = xyz + ax - \mu_1(2x+y+(1+a)z-18) - \mu_2(x+2y+z-18-a).$$

Then
$$\frac{\partial L}{\partial a} = x - \mu_1 z + \mu_2$$
.

So
$$\frac{df((x^*(a), y^*(a), z^*(a), a)}{da}|_{a=0} = x^*(0) - \mu_1^*(0)z^*(0) + \mu_2^*(0) = 4 - 8 \cdot 6 + 8 = -36.$$

Then

$$f(x^*(0.1), y^*(0.1), z^*(0.1), 0.1)$$

$$\approx f(x^*(0), y^*(0), z^*(0), 0) + \left(\frac{df((x^*(a), y^*(a), z^*(a), a)}{da}\Big|_{a=0}\right) \cdot 0.1$$

$$= 96 + (-36) * 0.1 = 92.8.$$