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1. The intersection of the sphere x2 + y2 + z2 = 1 and the cylinder x2 + y2 = x is a space curve known
as the Viviani’s curve. One way to express this parametric curve is

r(t) = ⟨sin2 t, sin t cos t, cos t⟩ where 0 ≤ t ≤ 2π.

(a) (5 pts) Find the unit tangent vector T(t).

(b) (3 pts) Find an equation of the normal plane for Viviani’s curve at the point (3
4 ,−

√

3
4 ,−1

2).

(c) (4 pts) Find its curvature κ(π) when t = π.

Figure : Viviani’s curve.

Solution:

(a) r′(t) = ⟨sin 2t, cos 2t,− sin t⟩ or ⟨2 sin t cos t, cos2 t − sin2 t,− sin t⟩ (1 pt)

∥r′(t)∥ =
√

1 + sin2 t (1 pt)

T(t) = r′(t)
∥r′(t)∥ = 1

√

1+sin2 t
⟨sin 2t, cos 2t,− sin t⟩ or 1

√

1+sin2 t
⟨2 sin t cos t, cos2 t − sin2 t,− sin t⟩ (3

pt: correct formula for T 2 pt, answer 1 pt))

Marking: (2nd line) if student use the second expression of r’(t) and simplify until ∥r’(t)∥ =√
sin2 t + cos4 t + sin4 t + 2 sin2 t cos2 t, still consider correct. (1 pt)

(b) Solve (sin2 t, sin t cos t, cos t) = (3
4 ,−

√

3
4 ,−1

2) and obtain t = 2π
3 . (1 pt)

Vector normal to the normal plane at t = 2π
3 is T(2π

3 ) = ⟨−
√

3
7 ,− 1

√

7
,−

√
3
7⟩. (1 pt)

Equation of normal plane:
√

3x + y +
√

3z = 0 (1 pt)

Marking: (2nd line) any direction parallel to T(2π/3) is acceptable (1 pt).
Solve the wrong t but plug in the correct equation of normal plane (2 pt)

(c) r′′(π) = ⟨2,0,1⟩ (1 pt)
r′(π) × r′′(π) = ⟨0,1,0⟩ × ⟨2,0,1⟩ = ⟨1,0,−2⟩ (1 pt),
∥r′(π)∥ = 1

κ(π) = ∣r
′
(π)×r′′(π)∣
∣r′(π)∣3 =

√
5 (2 pt: Correct formula 1 pt, answer 1 pt)
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2. Consider the function

f(x, y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x2 sin(x)
x2 − xy + y2 if (x, y) ≠ (0,0)

0 if (x, y) = (0,0)
.

(a) (5 pts) Show that f is continuous at (0,0).
(b) (5 pts) Let u = ⟨a, b⟩ be a unit vector. Find the directional derivative Duf(0,0) in terms of a

and b.

(c) (4 pts) By appealing to your answer in (b), prove that f(x, y) is not differentiable at (0,0).

Solution:

(a)

Marking scheme.

(1M) *Attempt to compute the limit lim
(x,y)→(0,0)

x2 sin(x)
x2 − xy + y2

(1M) Use of the fact lim
x→0

sinx

x
= 1

(2M) **Correct method to evaluate lim
x→0

x3

x2 − xy + y2 (e.g. by Polar coordinates &

Squeeze Theorem)
(1M) Correct limit by using a correct method

Remarks.
1. If a student attempts by taking paths, he/she can get at most 1M overall from *.
(Note it’s clear from the question that the relevant limit exists)

2. If a student writes lim
x→0

x3

x2 − xy + y2 = 0 (or any equivalent limits) without any

appropriate explanations, no marks will be awarded from **.

3. No deductions for students not explaining why
cos3 θ

1 − cos θ sin θ
is bounded. (But

students are expected to at least mention it before applying the Squeeze Theorem)
4. L’Hospital’s rule is not applicable. (note that θ can be implicitly dependent on r)

Sample Solution 1.

lim
(x,y)→(0,0)

x2 sin(x)
x2 − xy + y2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(1M)

= lim
(x,y)→(0,0)

x3

x2 − xy + y2 ⋅
sinx

x

Passing to polar coordinates, we have

lim
(x,y)→(0,0)

x3

x2 − xy + y2 = lim
r→0+

r ⋅ cos3 θ

1 − cos θ sin θ
= lim
r→0+

r ⋅ cos3 θ

1 − 1
2 sin(2θ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
bounded

= 0 by Squeeze Theorem

(2M)

Hence, lim
(x,y)→(0,0)

x2 sin(x)
x2 − xy + y2 = lim

(x,y)→(0,0)

x3

x2 − xy + y2 ⋅
sinx

x
= 0 ⋅ 1®

(1M)

= 0®
(1M)

= f(0,0)

Therefore, f(x, y) is continuous at (0,0).
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Sample Solution 2.

lim
(x,y)→(0,0)

x2 sin(x)
x2 − xy + y2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(1M)

= lim
r→0+

⎛
⎜⎜⎜⎜⎜
⎝

r®
→0

⋅ cos3 θ

1 − 1
2 sin(2θ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
bounded

⎞
⎟⎟⎟⎟⎟
⎠

⋅sin(r cos θ)
r cos θ

= 0®
Squeeze(2M)

⋅ 1®
(1M)

= 0®
(1M)

= f(0,0).

Therefore, f(x, y) is continuous at (0,0).

Sample Solution 3.

lim
(x,y)→(0,0)

x2 sin(x)
x2 − xy + y2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(1M)

= lim
r→0+

cos2 θ

1 − 1
2 sin(2θ) ⋅ sin(r cos θ)

Since lim
r→0+

sin(r cos θ) = sin( lim
r→0+

r cos θ) = 0 (1M) and

cos2 θ

1 − 1
2 sin(2θ) is a bounded function, we have by Squeeze Theorem that

lim
r→0+

cos2 θ

1 − 1
2 sin(2θ) ⋅ sin(r cos θ) = 0 = f(0,0). (2+1M, Correct argument)

Therefore, f(x, y) is continuous at (0,0).

(b)

Marking scheme.
(1M) Correct definition of Duf(0,0)
(2M) Correct simplification of the expression Duf(0,0)
(2M) Correct evaluation of Duf(0,0)

Remarks.
1. No marks are awarded to students who use (incorrectly) that Duf(0,0) =
∇f(0,0) ⋅ u.

2. No deductions for students not separating the case a = 0 and leave
a3

1 − ab as the

final answer.
3. No deductions for students not simplifying a2 + b2 = 1.

Sample Solution.
By definition,

Duf(0,0) = lim
t→0

f(ta, tb) − f(0,0)
t

, (1M)

= lim
t→0

t2a2 sin(ta)
t2(a2−ab+b2) − 0

t
= lim
t→0

a2 sin(ta)
t(1 − ab) , (2M)

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if a = 0

lim
t→0

a3

1 − ab ⋅
sin(ta)
ta

= a3

1 − ab if a ≠ 0
(2M)
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(c)

Marking scheme.
(1M+1M) **Correct computation of ∇f(0,0) = ⟨fx(0,0), fy(0,0)⟩
(1M) Pick an explicit u = ⟨a, b⟩ and find ∇f(0,0) ⋅ u
(1M) Establishing that Duf(0,0) ≠ ∇f(0,0) ⋅ u for some explicit u

Remarks.
1. 3M for students who, without offering a concrete u, write ‘ a3

1−ab is not of the form

ac1 + bc2 for some constants c1, c2’ or ‘ a3

1−ab is not a (bi)linear function in a and b’.
2. Marks for ** can be awarded even if a student wrote them in his/her work in (a)
or (b)
3. The last 2M will not be awarded if (b) is incorrect.

4. We accept students for writing ‘a is not identically equal to a3

1−ab ’.
5. We also accept proofs of non-differentiability by definition. In this case, the last

1M+1M will be allocated to a correct proof that lim
(x,y)→(0,0)

f(x, y) −L(x, y)√
x2 + y2

does not

exist/does not vanish.

Sample Solution 1. (By using (b))

By (b), we have that fx(0,0) = 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(1M)

and fy(0,0) = 0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(1M)

.

Then we take, for example, u = ⟨12 ,
√

3
2 ⟩. We have that

∇f(0,0) ⋅ u = 1

2
⋅ 1 +

√
3

2
⋅ 0 = 1

2
(1M)

but

Duf(0,0) =
(1/2)3

1 − (1/2)(
√

3/2)
= 1

8 − 2
√

3

Therefore, Duf(0,0) ≠ ∇f(0,0) ⋅ u (1M) and hence the function is not differentiable at
(0,0).

Sample Solution 2. (By definition of differentiability)

By (b), we have that fx(0,0) = 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(1M)

and fy(0,0) = 0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(1M)

.

Therefore, the linearisation of f at (0,0) is given by L(x, y) = x. Now consider the limit

lim
(x,y)→(0,0)

f(x, y) −L(x, y)√
x2 + y2

= lim
(x,y)→(0,0)

x2 sin(x)
x2−xy+y2 − x√

x2 + y2

Along the path (0, t), we have

x2 sin(x)
x2−xy+y2 − x√

x2 + y2
= 0→ 0 , as t→ 0

Along the path (t,2t) with t > 0, we have

x2 sin(x)
x2−xy+y2 − x√

x2 + y2
=

1
3 sin t − t

√
5t

→ 1

3
√

5
− 1√

5
, as t→ 0
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Since the limit along two paths do not agree (2M), we conclude that lim
(x,y)→(0,0)

f(x, y) −L(x, y)√
x2 + y2

does not exist and hence the function is not differentiable at (0,0).
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3. Consider the level surface defined by the equation z5 + (sinx)z3 + yz = 4.

(a) (5 pts) Find an equation of the tangent plane at (0,3,1).
(b) The equation of the level surface defines z = z(x, y) implicitly near (0,3,1) as a differentiable

function in x and y.

i. (4 pts) Find
∂z

∂x
∣
(x,y)=(0,3)

and
∂z

∂y
∣
(x,y)=(0,3)

.

ii. (4 pts) Use the linear approximation of z(x, y) at (0,3) to approximate the real root of
the quintic polynomial P (z) = z5 + 2.9z − 4.

Solution:

(a)

Marking scheme.
(2M) Find ∇F (x, y, z)
(2M) Find ∇F (0,3,1)
(1M) Equation of tangent plane

Remarks.
1. At most 4M can be awarded to students who made calculation error to at most
one of the coordinates of ∇F .

Sample solution.
Let F (x, y, z) = z5 + (sinx)z3 + yz. Then

∇F = ⟨(cosx)z3, z, 5z4 + 3(sinx)z2 + y⟩. (2M)

Therefore,
∇F (0,3,1) = ⟨1,1,8⟩. (2M)

Hence,
⟨1,1,8⟩ ⋅ ⟨x, y − 3, z − 1⟩ = 0 (1M)

or x + y + 8z = 11 gives the equation of the tangent plane.

(b) (i)

Marking scheme.
(2M) Use of Implicit Function Theorem or Chain rule (correctly)
(1M) Correct value for zx(0,3)
(1M) Correct value for zy(0,3)

Remarks.
1. At most 1M will be taken away if a student has forgotten to evaluate these partial
derivatives at (0,3)

Sample solution.
By implicit function theorem,

zx(0,3) = −
Fx(0,3,1)
Fz(0,3,1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(2M)

= −1

8°
(1M)

and zy(0,3) = −
Fy(0,3,1)
Fz(0,3,1)

= −1

8°
(1M)

.
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(ii)

Marking scheme.
(2M) Writing down the linear approximation of z(x, y)
(1M+1M) Association with the substitution (x, y) = (0,2.9) and correct answer

Remarks.
1. 1M can be awarded to students who demonstrate some understandings of the
concept of ‘linear approximation in multivariables’.
2. At most 3M can be given to students who inherited an incorrect answer from (b)

Sample solution.
The required linear approximation is

L(x, y) = 1 − 1

8
x − 1

8
(y − 3). (2M)

The root of the quintic polynomial P (X) = X5 + 2.9X − 4 equals to z(0,2.9) (1M) which

can be approximated by L(0,2.9) = 81

80
(1M).
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4. Let f(x, y) = ln(x + y + 1) + x2 − y.

(a) (7 pts) Find and classify the critical point(s) of f .

(b) (6 pts) Find the absolute maxima and minima of f on D = {(x, y) ∈ R2 ∣0 ≤ x ≤ 1,0 ≤ y ≤ 1}.

Solution:

(a) fx =
1

x + y + 1
+ 2x, fy =

1

x + y + 1
− 1. (1%)

To solve fx = 0 and fy = 0, we have x = −1/2 and y = 1/2. So the critical point of f is
(−1/2,1/2). (2%)

fxx =
−1

(x + y + 1)2 + 2, fxy =
−1

(x + y + 1)2 and fyy =
−1

(x + y + 1)2 . (1%)

Then

D(−1

2
,
1

2
) = fxx(−

1

2
,
1

2
)fyy(−

1

2
,
1

2
) − [fxy(−

1

2
,
1

2
)]2 = −2 < 0.(1%)

So the critical point (−1/2,1/2) is a saddle point.(2%)

(b) Since (−1/2,1/2) is not in D, the extreme value of f does not occur in the interior of D.
(1%)
The boundary of D consists of the four line segments L1 ∶ x = 0, 0 ≤ y ≤ 1, L2 ∶ y = 0, 0 ≤
x ≤ 1, L3 ∶ x = 1, 0 ≤ y ≤ 1 and L4 ∶ y = 1, 0 ≤ x ≤ 1. On L1, we have

f1(y) ∶= f(0, y) = ln(y + 1) − y, 0 ≤ y ≤ 1.

Since f ′1(y) =
−y
y + 1

≤ 0 for 0 ≤ y ≤ 1, we have f1 is decreasing in y. So its maximum value

is f(0,0) = 0 and its minimum value is f(0,1) = ln 2 − 1. (1%)
On L2, we have

f2(x) ∶= f(x,0) = ln(x + 1) + x2, 0 ≤ x ≤ 1.

Since f ′2(x) =
1

x + 1
+ 2x ≥ 0 for 0 ≤ x ≤ 1, we have f2 is increasing in x. So its maximum

value is f(1,0) = ln 2 + 1 and its minimum value is f(0,0) = 0. (1%)
On L3, we have

f3(y) ∶= f(1, y) = ln(y + 2) + 1 − y, 0 ≤ y ≤ 1.

Since f ′3(y) =
−y − 1

y + 2
≤ 0 for 0 ≤ y ≤ 1, we have f3 is decreasing in y. So its maximum value

is f(1,0) = ln 2 + 1 and its minimum value is f(1,1) = ln 3. (1%)
On L4, we have

f4(x) ∶= f(x,1) = ln(x + 2) + x2 − 1, 0 ≤ x ≤ 1.

Since f ′4(x) =
1

x + 2
+ 2x ≥ 0 for 0 ≤ x ≤ 1, we have f4 is increasing in x. So its maximum

value is f(1,1) = ln 3 and its minimum value is f(0,1) = ln 2 − 1. (1%)
Therefore, the absolute maximum value of f on D is ln 2 + 1 and the absolute minimum
value of f on D is ln 2 − 1. (1%)
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5. (10 pts) Use the method of Lagrange multipliers to find the absolute maximum and minimum
values (if exists) of f(x, y, z) = x2 + 3z2 subject to the constraints x + y + z = 1 and x − y + 2z = 2.

Solution:

Let g1(x, y, z) = x + y + z and g2(x, y, z) = x − y + 2z. Then we will find

Max f(x, y, z), Min f(x, y, z)
subject to the constraints

{ g1(x, y, z) = x + y + z = 1,
g2(x, y, z) = x − y + 2z = 2.

(2 pts)

By Lagrange multipliers, we have

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∇f = λ ⋅ ∇g1 + µ ⋅ ∇g2
g1(x, y, z) = x + y + z = 1
g2(x, y, z) = x − y + 2z = 2

⇒
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(2x,0,6z) = λ ⋅ (1,1,1) + µ ⋅ (1,−1,2)
x + y + z = 1
x − y + 2z = 2

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2x = λ + µ
0 = λ − µ

6z = λ + 2µ
x + y + z = 1
x − y + 2z = 2

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2x = λ + µ
λ = µ

6z = λ + 2µ
x + y + z = 1
x − y + 2z = 2

⇒
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x = λ = µ = 2z
x + y + z = 1
x − y + 2z = 2

⇒
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x = λ = µ = 6
7

y = −2
7

z = 3
7 .

(5 pts)

Note that the intersection of two planes g1(x, y, z) = 1 and g2(x, y, z) = 2 is a line L in R3.
By Lagrange multiplier, the absolute minimum value of the function f is f(6

7 ,
−2
7 ,

3
7) = 9

7 since
there is another point (3,−1,−1) ∈ L with f(3,−1,−1) = 12 > Γf(6

7 ,
−2
7 ,

3
7). (2 pts)�There is

no absolute maximum value since the x-coordinate (or z-coordinate) of the point on L can be
arbitrary large. (1 pt)

Remark 1. (If you use the following method, you can only get at most 6 credits.)
Since

{ x + y + z = 1
x − y + 2z = 2

⇒ 2x + 3z = 3⇒ x = 1

2
(3 − 3z),

the function f(x, y, z) becomes

f(x, y, z) = x2 + 3z2 = (3

2
− 3

2
z)2 + 3z2 = 21

4
(z − 3

7
)2 + 9

7
≥ 9

7
. (2 pts)

The absolute minimum value of the function f is f(6
7 ,

−2
7 ,

3
7) = 9

7 . (3 pts) There is no absolute
maximum value since the x-coordinate (or z-coordinate) of the point on L can be arbitrary
large. (1 pt)

Remark 2. (If you use the following method, you can only get at most 6 credits.)
The intersection of two planes x + y + z = 1 and x − y + 2z = 2 is a line L in R3 described by
(x, y, z) = (3+3t,−1−t,−1−2t) for each point (x, y, z) ∈ L. Then the function f(x, y, z) becomes

f(x, y, z) = (3 + 3t)2 + 3(−1 − 2t)2 = 21(t + 5

7
)2 + 9

7
≥ 9

7
. (2 pts)
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Under the constraints, the function f(x, y, z) obtains its absolute minimum value 9
7 when t = −5

7 .
which implies (x, y, z) = (6

7 ,
−2
7 ,

3
7). (3 pts) There is no absolute maximum value since the x-

coordinate (or z-coordinate) of the point on L can be arbitrary large. (1 pt)

Remark 3. (If you use the following method, you can only get at most 9 credits.)
Since

{ x + y + z = 1
x − y + 2z = 2

⇔ { 2x + 3z = 3
x + y + z = 1

(1 pt)

we will use Lagrange multiplier method to find the extreme values of f(x, y, z) ∶= x2 + 3z2 with
the constraint g(x, y, z) ∶= 2x + 3z = 3. (2 pts) By Lagrange multipliers, we have

{ ∇f = λ ⋅ ∇g
g(x, y, z) = 2x + 3z = 3

⇒ { (2x,0,6z) = λ ⋅ (2,0,3)
2x + 3z = 3

⇒
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2x = 2λ
6z = 3λ

2x + 3z = 3

⇒ { x = λ = 2z
2x + 3z = 3

⇒ (x, z, λ) = (6

7
,
3

7
,
6

7
)⇒ (x, y, z) = (6

7
,
−2

7
,
3

7
). (2 pts)

Under the constraints { 2x + 3z = 1
x + y + z = 1,

we get

f(x, y, z) = f(1

2
(1 − 3z),1 − x − z, z) = (3

2
− 3

2
z)2 + 3z2 = 21

4
(z − 3

7
)2 + 9

7
≥ 9

7
= f(6

7
,
−2

7
,
3

7
).

The absolute minimum value of the function f(x, y, z) = x2 + 3z2 is f(6
7 ,

−2
7 ,

3
7) = 9

7 . (3 pts)

There is no absolute maximum value since the x-coordinate (or z-coordinate) the constraint
2x + 3z = 3 can be arbitrary large. (1 pt)
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6. Evaluate the following integrals.

(a) (8 pts)

∫
2

1
∫

x

√
x

sin(πx
2y

)dydx + ∫
4

2
∫

2

√
x

sin(πx
2y

)dydx.

(b) (8 pts)

∭
E

√
z dV,

where E is the solid lying below the cone z2 = 4x2 + 4y2, within the cylinder x2 + y2 = 1 and
above the plane z = 0.

Solution:

(a) (Method I)

∫
2

1
∫

x

√
x

sin
πx

2y
dydx + ∫

4

2
∫

2

√
x

sin
πx

2y
dydx

= ∫
2

1
∫

y2

y
sin

πx

2y
dxdy (4 pts)

= ∫
2

1
[−2y

π
⋅ cos

πx

2y
∣
x=y2

x=y

]dy

= ∫
2

1
[−2y

π
⋅ (cos

πy

2
− cos

π

2
)]dy (1 pt)

= −2

π ∫
2

1
y ⋅ cos

πy

2
dy = −4

π2 ∫
2

1
y d sin

πy

2

= −4

π2
[y ⋅ sin πy

2
∣
2

1

−∫
2

1
sin

πy

2
dy] (2 pts)

= −4

π2
[−1 + 2

π
cos

πy

2
∣
2

1

] = 4

π3
(2 + π). (1 pt)

(Method II)

∫
2

1
∫

x

√
x

sin
πx

2y
dydx + ∫

4

2
∫

2

√
x

sin
πx

2y
dydx

= ∫
2

1
∫

2

y
sin

πx

2y
dxdy + ∫

2

1
∫

y2

2
sin

πx

2y
dxdy (4 pts)

= ∫
2

1
[−2y

π
⋅ cos

πx

2y
∣
x=2

x=y

]dy + ∫
2

1
[−2y

π
⋅ cos

πx

2y
∣
x=y2

x=2

]dy

= ∫
2

1
[−2y

π
⋅ (cos

2π

2y
− cos

π

2
)]dy + ∫

2

1
[−2y

π
⋅ (cos

πy

2
− cos

2π

2y
)]dy (1 pt)

= ∫
2

1
[−2y

π
⋅ (cos

πy

2
− cos

π

2
)]dy

= −2

π ∫
2

1
y ⋅ cos

πy

2
dy = −4

π2 ∫
2

1
y d sin

πy

2

= −4

π2
[y ⋅ sin πy

2
∣
2

1

−∫
2

1
sin

πy

2
dy] (2 pts)

= −4

π2
[−1 + 2

π
cos

πy

2
∣
2

1

] = 4

π3
(2 + π). (1 pt)
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(b) (Method I) The solid E can be described as

E = {(x, y, z) ∣ x2 + y2 ≤ 1, 0 ≤ z ≤
√

4(x2 + y2),}
= {(r, θ, z) ∣ 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1, 0 ≤ z ≤ 2r}. (3 pts)

Using cylinder coordinate, we have

∭
E

√
z dV

= ∫
2π

0
∫

1

0
∫

2r

0

√
z ⋅ r dz dr dθ (2 pts)

= ∫
2π

0
∫

1

0
[ 2

3
z

3
2 ] ∣

z=2r

z=0

⋅r dr dθ

= 2

3 ∫
2π

0
∫

1

0
2
√

2 ⋅ r 5
2dr dθ (2 pts)

= 4
√

2

3 ∫
2π

0

2

7
r

7
2 ∣

r=1

r=0

dθ

= 8
√

2

21
⋅ ∫

2π

0
1 dθ = 8

√
2

21
⋅ 2π = 16

√
2

21
π. (1 pt)

(Method II)

∭
E

√
z dV

= ∬
0≤x2+y2≤1

∫
√

4(x2+y2)

0

√
z dz dA (3 pts)

= ∬
0≤x2+y2≤1

2

3
z

3
2 ∣

√

4(x2+y2)

0

dA

= 2

3 ∬
0≤x2+y2≤1

2
√

2 ⋅ (x2 + y2) 3
4 dA (2 pts)

(let x = r cos θ, y = r sin θ)

= 4
√

2

3 ∫
2π

0
∫

1

0
r

3
2 ⋅ r dr dθ (2 pts)

= 4
√

2

3
⋅ (∫

1

0
r

5
2dr) ⋅ (∫

2π

0
1dθ)

= 4
√

2

3
⋅ 2

7
⋅ 2π = 16

√
2π

21
. (1 pt)

Page 12 of 14



7. Let E be an upper-half ball which occupies the region

E = {(x, y, z) ∈ R3 ∣x2 + y2 + z2 ≤ 16 and z ≥ 0}

and whose density function is ρ(x, y, z) =
√
x2 + y2 for each point (x, y, z) ∈ E.

(a) (7 pts) Find the mass of E.

(b) (5 pts) Let (0,0, z̄) be the center of mass of E. Find the value of z̄.

Solution:

(a) the formula of mass is

M =∭
E
ρ(x, y, z)dV. (1)

Applying spherical coordinates yields

M = ∫
π
2

0
∫

2π

0
∫

4

0
r sin(ϕ)r2 sin(ϕ)dr dϑdϕ (2)

= 32π2. (3)

(b) the formula of z is

z = ∭E zρ(x, y, z)dV

M
. (4)

Applying spherical coordinates yields

∫
π
2

0
∫

2π

0
∫

4

0
r cos(ϕ)r sin(ϕ)r2 sin(ϕ)dr dϑdϕ (5)

= 211π

15
. (6)

Therefore,

z = 64

15π
. (7)

Grading Suggestion.

� For (a), get 1/7 by obtaining (1), 3/7 by obtaining (2), and 3/7 by obtaining (3).

� For (b), get 1/5 by by obtaining (4), 2/5 by obtaining (5), 1/5 by obtaining (6), and 1/5
by obtaining (7).
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8. (10 pts) Find the volume of the solid lying below the plane z = 9 and above the surface
z = (3x + y − 1)2 + (x − y)2.

Solution:

Let D ∶= {(x, y) ∣ (3x+y−1)2+(x−y)2 ≤ 9} be the region enclosed by (3x+y−1)2+(x−y)2 = 9
in the xy-plane. Then the solid in the question can be described as

E ∶= {(x, y, z) ∣ (x, y) ∈D, (3x + y − 1)2 + (x − y)2 ≤ z ≤ 9}.

So we have

Volume of the solid =∭
E

1 dV

=∬
D

∫
9

(3x+y−1)2+(x−y)2
1 dz dA (4 pts)

=∬
D

[9 − (3x + y − 1)2 − (x − y)2] dA (1 pt)

( let{. u = 3x + y − 1
v = x − y ⇒ { x = 1

4(u + v + 1)
y = 1

4(u − 3v + 1) ⇒ ∣J ∣ = ∣ ∣
1
4

1
4

1
4

−3
4

∣ ∣ = 1

4
. )

= ∬
u2+v2≤9

[9 − u2 − v2] ⋅ 1

4
dA (3 pts)

(let u = r cos θ, v = r sin θ)

= 1

4 ∫
2π

0
∫

3

0
[9 − r2] ⋅ r dr dθ

= 1

4
⋅ 2π ⋅ [9

2
r2 − 1

4
r4] ∣

3

0

= 1

4
⋅ 2π ⋅ (81

2
− 81

4
) = 81π

8
. (2 pts)

Page 14 of 14


