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1. (10 pts) Let the curve C be given by r(t) = 2
3(2 + t)

3
2 i + 2

3(2 − t)
3
2 j + atk, a ≠ 0, t ∈ (−2,2). Find

the vectors T, N, B, the curvature κ and the torsion τ of the curve C at t = 0.

Solution:

r′(t) = ⟨(2 + t)1/2,−(2 − t)1/2, a⟩

r′′(t) = 1

2
⟨(2 + t)−1/2, (2 − t)−1/2,0⟩

r′′′(t) = 1

4
⟨−(2 + t)−3/2, (2 − t)−3/2,0⟩

∣r′(t)∣ = (4 + a2)1/2

r′(t) × r′′(t) = 1

2
⟨−a(2 − t)−1/2, a(2 + t)−1/2,4(4 − t2)−1/2⟩

∣r′(t) × r′′(t)∣ =
√

4 + a2/
√

4 − t2, (r′(t) × r′′(t)) ⋅ r′′′(t) = a
2
(4 − t2)−3/2

T(t) = r′(t)
∣r′(t)∣ =

1√
4 + a2

⟨(2 + t)1/2,−(2 − t)1/2, a⟩

N(t) = T′

∣T′∣ =
1

2
⟨(2 − t)1/2, (2 + t)1/2,0⟩

B(t) = T ×N(t) = 1

2
√

4 + a2
⟨−a(2 + t)1/2, a(2 − t)1/2,4⟩

κ(t) = ∣T′(t)∣
∣r′(t)∣ =

∣r′ × r′′∣
∣r′∣3 = 1

(4 + a2)
√

4 − t2

τ(t) = (r′ × r′′) ⋅ r′′′
∣r′ × r′′∣2 = a

2

1

(4 + a2)
√

4 − t2

At t = 0 (Ï� 2 �)

T = 1√
4 + a2

⟨
√

2,−
√

2, a⟩

N = 1

2
⟨2,2,0⟩

B = 1

2
√

4 + a2
⟨−a

√
2, a

√
2,4⟩

κ = 1

2(4 + a2)
τ = a

4(4 + a2)
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2. (12 pts) Consider the following function on R2:

f(x, y) = {
x2y

x4+(siny)2 if (x, y) ≠ (0,0);
0 if (x, y) = (0,0).

(a) (6 pts) Is f(x, y) continuous at (x, y) = (0,0)? Justify your answer.

(b) (4 pts) Do the partial derivatives fx(0,0) and fy(0,0) exist? (Compute them if you think
they exist; otherwise, prove that they do not exist.)

(c) (2 pts) Is f differentiable at (0,0)? Justify your answer.

Solution:

(a) Let (x, y) tend to (0,0) along special paths. One may gain 6 points if the students find
such a path that along which the limit of f is different from 0 = f(0,0). For example, one
may consider (x,mx2): if x ≠ 0,

f(x,mx) = x2 ⋅mx2
x4 + sin(mx)2 =

m

1 + (m sin(mx2)
mx2 )2

→ m

1 +m2
≠ 0 = f(0,0) if m ≠ 0 as x→ 0.

Therefore f is not continuous at (0,0). One may also consider for example the curve
y = sin−1(mx2). ~�ï�&ª�
ðuP
I¼f(0,0) = 0�ûU��°À/¤ï
c1ó2��

(b) Compute by definition that fx(0,0) = 0 = fy(0,0). N����P�Gcº��4��&G
�0��

(c) Since f is not continuous at (0,0), it is not differentiable at (0,0). One may also argue by
definition. �1E���2��&G�0��
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3. (10 pts) Let g(x, y, z) be a function defined on R3 with continuous partial derivatives. Suppose
that

∣∇g(2,1,3)∣2 = 24 and gz(2,1,3) > 0.

Moreover, the trajectories of the two curves

r1(s) = ⟨2s, s2,1 + 2s⟩ and r2(t) = ⟨2et, cos t,3 + t + 5t2⟩

lie on the level surface g(x, y, z) = 0 completely.

(a) (5 pts) Find the vector ∇g(2,1,3).
(b) (5 pts) Suppose that f(x, y, z) is a function defined on R3 with continuous partial derivatives

such that

f(2,1,3) ⩾ f(x, y, z) for every point (x, y, z) on the level surface g(x, y, z) = 0.

If f(2,1,3) = 5, ∣∇f(2,1,3)∣2 = 6 and fy(2,1,3) > 0, estimate the value of f(2.01,0.9,3.02) by
the linear approximation of f at (2,1,3).

Solution:

(a) Note that r1(1) = (2,1,3) = r2(0). Thus

(2,2,2) = r′1(1) ⊥ ∇g(2,1,3) ⊥ r′2(0) = (2,0,1),

�0�ái���Ïý��cºï�1�	 and hence ∇g(2,1,3) is parallel to (2,2,2) ×
(2,0,1) = (2,2,−4). ��ú∇g(2,1,3)sL¼i��Ï�Mï�2���M��cº
�1�	 By (i), we see that ∇g(2,1,3) = (−2,−2,4). �(0�ö(i)�z�∇g(2,1,3)�¹
�ï�1�	

(b) We need to find ∇f(2,1,3) for the linear approximation. By (a) and by the Lagrange
multiplier method we see that ∇f(2,1,3) = λ∇g(2,1,3) for some λ ∈ R.�ª0��(
Lagrange�1�	 By (b) we see that λ = −1

2 and ∇f(2,1,3) = (1,1,−2).�z�∇f(2,1,3) =
(1,1,−2)��1cºï�2�	 Therefore

f(2.01,0.9,3.02) ≈ f(2,1,3) + ∇f(2,1,3) ⋅ (0.01,−0.1,0.02) = 4.87.

�Ú'<Ñ�b�cº�1����cº�1�	
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4. (10 pts) Let f(x, y) = xy(x+y)
ex+y be defined on the first quadrant D ∶ x > 0 and y > 0 (without

boundary). Find all critical points of f in D and classify them (as local maximum points, local
minimum points, or saddle points). Please provide details of calculation.

Solution:

The first derivatives of f are

∂f

∂x
= e−x−y (2xy + y2 − x2y − xy2) ,

∂f

∂y
= e−x−y (2xy + x2 − x2y − xy2) . (2 points)

There is only one critical point of f in D, which is

(x, y) = (3

2
,
3

2
) . (2 points)

The second partial derivatives of f are

∂2f

∂x2
= e−x−y (2y − 4xy − 2y2 + x2y + xy2) ,

∂2f

∂x∂y
= e−x−y (2x + 2y − x2 − 4xy − y2 + x2y + xy2) ,

∂2f

∂y2
= e−x−y (2x − 4xy − 2x2 + x2y + xy2) . (3 points)

Since

det∇2f (3

2
,
3

2
) = e−6 ∣ −

15
4 −3

4

−3
4 −15

4

∣ > 0

and
∂2f

∂x2
(3

2
,
3

2
) = −15

4
e−3 < 0 (2 points) ,

the critical point (3
2 ,

3
2
) is a local maximum point of f (1 point).
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5. (12 pts) A pentagon is formed by placing an isosceles triangle on a rectangle. The side lengths are
denoted by a, b, and c as shown in the figure.

(a) (3 pts) Write down the area of pentagon in terms of a, b, and c.

(b) (9 pts) Find the maximum area of pentagon if the perimeter is fixed as 2.

Solution:

(a) The height of the upper triangle equals
√
a2 − c2 (2 points). Therefore the area is given

by
A = c ⋅

√
a2 − c2 + 2bc (2 points).

(b) We use the method of Lagrange multiplier. We are looking for the maximum value of A
under the conditions a, b, c > 0 and g(a, b, c) = 1 where g(a, b, c) = a+b+c. When A achieves
the extremum, we have

ac√
a2 − c2

= λ

2c = λ
a2 − 2c2√
a2 − c2

+ 2b = λ

a + b + c = 1

(4 points).

The first two equations imply 3a2 = 4c2 or equivalently c =
√

3
2 a. Plugging into the third

equation and replacing λ by 2c =
√

3a, we have b = 1+
√

3
2 a. The last equation then reduces

to 3+2
√

3
2 a = 1 so we obtain

a = 2

3 + 2
√

3
, b = 1 +

√
3

3 + 2
√

3
, c =

√
3

3 + 2
√

3
.

In this circumstance,

A = 6 + 3
√

3

(3 + 2
√

3)2
(4 points).
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6. (26 pts) (a) (6 pts) Find the average value of f(x) = ∫
a

x
e−t

2

dt on the interval [0, a], where a > 0

is a constant.

(b) (10 pts) Compute ∭
E

e3y−y
3

dV , where E is the solid bounded by x = 0, y = 0, x = z, y = z,

and z = 1.

(c) (10 pts) Compute ∫
a

−a
∫
√

a2−x2

0
∫

a+
√

a2−x2−y2

a

1√
x2 + y2 + z2

dzdydx.

(Hint: Use Spherical coordinates.)

Solution:

(a) The average value of f(x) on [0, a] is 1
a ∫

a

0 f(x)dx. (1 pt for the definition of average
value.)

1

a ∫
a

0
f(x)dx = 1

a ∫
a

0
∫

a

x
e−t

2

dt dx

= 1

a ∫
a

0
∫

t

0
e−t

2

dxdt (3 pts for changing the order of integration)

= 1

a ∫
a

0
te−t

2

dt = 1

a
(−1

2
e−t

2) ∣
t=a

t=0
= 1

2a
(1 − e−a2) (2 pts for the final answer)

(b) Solution 1: E = {(x, y, z)∣0 ≤ y ≤ 1, y ≤ z ≤ 1,0 ≤ x ≤ z}
Hence ∭

E

e3y−y
3

dV = ∫
1

0
∫

1

y
∫

z

0
e3y−y

3

dxdzdy

(5 pts. If students correctly project E onto the yz-plane and write down the correct range
of x, they get 2 pts. 3 pts for correct iterated integrals.)

∫
1

0
∫

1

y
∫

z

0
e3y−y

3

dxdzdy = ∫
1

0
∫

1

y
ze3y−y

3

dz (1 pt)

= ∫
1

0

1

2
(1 − y2)e3y−y3dy (1 pt)

let u=3y−y3ÔÔÔÔÔÔÔ
du=(3−3y2)dy

∫
2

0

1

6
eu du

(1 pt for substitution. 1 pt for correct upper and lower limit.)

= 1

6
(e2 − 1) (1 pt for final answer.)

Solution 2: E = {(x, y, z)∣0 ≤ y ≤ 1, y ≤ x ≤ 1, x ≤ z ≤ 1} ∪ {(x, y, z)∣0 ≤ y ≤ 1,0 ≤ x ≤ y, y ≤
z ≤ 1}

∭
E

e3y−y
3

dV = ∫
1

0
∫

1

t
∫

1

x
e3y−y

3

dzdxdy + ∫
1

0
∫

y

0
∫

1

y
e3y−y

3

dzdxdy

(5 pts. If students correctly project E onto the xy-plane and write down the correct range
of x, they get 2 pts. 3pts for correct iterated integrals.)
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The integral is

∫
1

0
∫

1

y
(1 − x)e3y−y3dxdy + ∫

1

0
∫

y

0
(1 − y)e3y−y3dxdy (1 pt)

= ∫
1

0
(1 − y) − 1

2
(1 − y2)e3y−y3dy + ∫

1

0
y(1 − y)e3y−y3dy (1 pt)

= ∫
1

0

1

2
(1 − y2)e3y−y3dy = 1

6
(e2 − 1) (3 pts)

(c) Solution 1: The integral is ∭
E

1√
x2 + y2 + z2

dV , where E = {(ρ, θ,ϕ)∣0 ≤ θ ≤ π,0 ≤ ϕ ≤
π
4 ,

a
cosϕ ≤ ρ ≤ 2a cosϕ}.

⎛
⎜⎜
⎝

1 pt for the range of θ

2 pts for the range of ϕ

2 pts for the range of ρ

⎞
⎟⎟
⎠

∭
E

1√
x2 + y2 + z2

= ∫
π

0
∫

π
4

0
∫

2a cosϕ

a
cosϕ

1

ρ
ρ2 sinϕdρdϕdθ (1 pt for Jacobian)

= π∫
π
4

0

1

2
(4a2 cos2ϕ − a2

cos2ϕ
) sinϕdϕ (1 pt)

= π
2
a2∫

π
4

0
(4 cos2ϕ − 1

cos2ϕ
) sinϕdϕ

u=cosϕÔÔÔÔÔÔ
du=− sinϕdϕ

π

2
a2∫

1√
2

1
(4u2 − 1

u2
) (−du) (2 pts for substitution)

= π
2
a2 [4

3
u3 + 1

u
] ∣
u=1

u= 1√
2

= π
2
a2 [7

3
− 4

3

√
2] (1 pt for final answer.)

Solution 2: Use cylindrical coordinates. The integral is ∭
E

1√
x2 + y2 + z2

dV , where

E = {(r, θ, z)∣0 ≤ θ ≤ π,0 ≤ r ≤ a, a ≤ z ≤ a +
√
a2 − r2}.

⎛
⎜⎜
⎝

1 pt for the range of θ

1 pt for the range of r

1 pt for the range of z

⎞
⎟⎟
⎠

∭
E

1√
x2 + y2 + z2

= ∫
π

0
∫

a

0
∫

a+
√

a2−r2

a

1√
r2 + z2

r dzdrdθ (1 pt for Jacobian)

Note that ∫
1√

a2 + t2
dt = ln(t +

√
a2 + t2) + c. (2 pts)
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7. (10 pts) Let D be an xy-plane region bounded by one loop of r2 = cos 2θ. Find the area of the part

of the upper half sphere z =
√

1 − x2 − y2 that is above D.

Solution:

The first derivatives of f (x, y) =
√

1 − x2 − y2 are

∂f

∂x
= −x√

1 − x2 − y2
,

∂f

∂y
= −y√

1 − x2 − y2
. (2 points)

The area of the graph of f above D is given by

∬
D

¿
ÁÁÀ(∂f

∂x
)
2

+ (∂f
∂y

)
2

+ 1 dxdy =∬
D

1√
1 − x2 − y2

dxdy (2 points)

= ∫
π
4

−
π
4

∫
√

cos(2θ)

0

r√
1 − r2

dr dθ (3 points)

= ∫
π
4

−
π
4

(1 −
√

1 − cos (2θ)) dθ

= 2∫
π
4

0
(1 −

√
2 sin θ) dθ = 2(π

4
+ 1 −

√
2) (3 points) .
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8. (10 pts) Let D = {(x, y)∣x > 0, y > 0, y ≤ x2 ≤ 2y,3x ≤ y2 ≤ 4x}. Evaluate ∬
D

xy dA.

Solution:

Method 1:

A(31/3,32/3) B(41/3,42/3) C(24/3,25/3) D(22/331/3,21/332/3)

11 22 33 44 55

11

22

33

00

aa

AA

BB

CC

DD

I = ∫
41/3

31/3
∫

x2

√

3x
xy dydx + ∫

22/331/3

41/3
∫
√

4x

√

3x
xy dydx + ∫

24/3

22/331/3
∫
√

4x

x2/2
xy dydx = 7

4

6 �M�
�P�Ï�
��h
f 1 ��hËf��q 6 ��
�M�����8W��
TH (7

4)�4 �

Method 2:
Make a change of variables u = x2

y , v = y2

x , which transforms D to E = {(u, v)∣1 ≤ u ≤ 2,3 ≤ v ≤ 4}.

Observe that uv = xy, ∂(u,v)
∂(x,y) = ∣

2x
y −x2y2
− y2x2

2y
x

∣ = 4 − 1 = 3, ∂(x,y)
∂(u,v) = 1

3 (4 ��å�Ö�xc 1 �)

I =∬
E

uv¯
�Û��ýx 2 �

∣∂(x, y)
∂(u, v)∣dudv =

1

3 ∫
2

1
udu∫

4

3
v dv

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2 D
��P� 1 ��q 2 �

= 1

3
(u

2

2
)
2

1

(v
2

2
)
4

3

= 7

4®
2 �

ûU	H�!H��Û����hË�%f��2 D
��P� 1 ��q 2 ��Jacobian 4
���Û��«M�ýx 2 ��TH 2 ��(��N�
Å�)
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