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1. (15 pts) Let f(x, y, z) = sin(xy + z), and P be the point (0,−2, π3 ).
(a) (6 pts) Compute ∇f(x, y, z).
(b) (2 pts) At P , find the direction along which f obtains maximum directional derivative.

(c) (4 pts) Calculate the directional derivative ∂f
∂u(P ), where u is a unit vector making an angle

π
6 with the gradient ∇f(P ).

(d) (3 pts) The level surface f(x, y, z) =
√

3
2 defines z implicitly as a function of x and y near P .

Compute ∂z
∂x at P .

Solution:

(a)

∇f = (y cos(xy + z), x cos(xy + z), cos(xy + z))
= cos(xy + z)(y, x,1)(each component 2%)

(b) ∇f(0,−2, π3 ) = 1
2(−2,0,1) (each component 2

3%)

(c)

∂f

∂u⃗
(P ) = ∇f(P ) ⋅ u(2%) = ∣∇f(P )∣ ⋅ ∣u∣ ⋅ cos

π

6
(1%) =

√
5

2

√
3

2
=

√
15

4
(1%).

(d)

sin(xy + z(x, y)) =
√

3

2
⇒ cos(xy + z(x, y))(y + zx) = 0(2%)

⇒ cos(π
3
)(−2 + zx) = 0⇒ zx = 2(1%)

Page 1 of 7



2. (12 pts) Assume that f(x, y, z) and g(x, y, z) have continuous partial derivatives and (1,2,−1)
lies on the level surface f(x, y, z) = 3. Suppose the tangent plane of f(x, y, z) = 3 at (1,2,−1) is
2x − y + 3z + 3 = 0 and fy(1,2,−1) = 2.

(a) (4 pts) Find ∇f(1,2,−1).
(b) (4 pts) Estimate f(1.1,2.01,−0.98) by the linear approximation of f at (1,2,−1).
(c) (4 pts) Suppose that when restricted on the surface f(x, y, z) = 3, g(x, y, z) obtains maximum

value at (1,2,−1) and gx(1,2,−1) = −2. Find ∇g(1,2,−1) and the maximum directional
derivative of g at the point (1,2,−1).

Solution:

(a) The tangent plane of f(x, y, z) = 3 at (1,2,−1) is

fx(1,2,−1)(x − 1) + fy(1,2,−1)(y − 2) + fz(1,2,−1)(z + 1) = 0. (2 pts)

Since the tangent plane is 2x − y + 3z + 3 = 0, ∇f(1,2,−1) � (2,−1,3). (1 pt)
Because fy(1,2,−1) = 2, we know that ∇f(1,2,−1) = −2(2,−1,3) = (−4,2,−6). (1 pt).

Ans: ∇f(1,2,−1) = (−4,2,−6).

(b) The linear approximation of f at (1,2,−1) is

L(x, y, z) = f(1,2,−1) + fx(1,2,−1)(x − 1) + fy(1,2,−1)(y − 2) + fz(1,2,−1)(z + 1)

(2 pts for the definition of L(x, y, z).)

f(1.1,2.01,−0.98) ≈ L(1.1,2.01,−0.98)
= 3 − 4(0.1) + 2(0.01) − 6(0.02) (1 pt for plugging in correct partial derivatives and x, y, z)

= 2.5 (1 pt for computation)

(c) By the method of Lagrange multiplies, we know that ∇g(1,2,−1) = λ∇f(1,2,−1) (1 pt)
Hence ∇g(1,2,−1) = λ(−4,2,−6).
By gx(1,2,−1) = −2, we know that ∇g = 1

2(−4,2,−6) = (−2,1,−3) (1 pt).

The maximum directional derivative of g at (1,2,−1) is ∣∇g(1,2,−1)∣ =
√

14
(1 pt for knowing the maximum directional derivative is ∣∇g∣. 1 pt for the final answer.)
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3. (25 pts) f(x, y) = x2 + xy + y2 + 3x.

(a) (7 pts) Find critical point(s) of f(x, y) and determine whether it is a saddle point or f(x, y)
obtains local maximum or local minimum at it.

(b) (15 pts) Find the maximum and minimum value of f(x, y) on the curve x2 + y2 = 9 by the
method of Lagrange multiplies.

(c) (3 pts) Find the maximum value of f(x, y) on the region x2 + y2 ≤ 9.

Solution:

(a) To find critical points of f(x, y), we solve

⎧⎪⎪⎨⎪⎪⎩

fx = 2x + y + 3 = 0

fy = x + 2y = 0

(1 pt for setting fx = fy = 0. 1 pt for correct fx and fy.)
The solution is (x, y) = (−2,1). (1 pt)
At (−2,1), fxx = 2, fxy = 1, fyy = 2 (1 pt)

D(−2,1) = ∣fxx fxy
fxy fyy

∣ (−2,1) = ∣2 1
1 2

∣ = 3 (1 pt)

∵ D(−2,1) = 3 > 0 and fxx(−2,1) = 2 > 0 (1 pt)
We know that f(−2,1) is a local minimum. (1 pt)

(b) By the method of Lagrange multiplies, to find extreme values of f(x, y) on the constraint

g(x, y) = x2 + y2 = 9, we solve

⎧⎪⎪⎨⎪⎪⎩

∇f = λ∇g
g(x, y) = 9

(2 pts)

which is

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2x + y + 3 = 2λx (1)
x + 2y = 2λy (2)
x2 + y2 = 9 (3)

(2 pts)

Method 1:
(2) ⇒ x = 2(λ − 1)y
plug in (1) ⇒ (1 − 4(λ − 1)2)y = −3 ⇒ y = 3

4(λ−1)2−1 , x = 6(λ−1)
4(λ−1)2−1 . (3 pts)

plug in (3) ⇒ 9+36(λ−1)2

(4(λ−1)2−1)2 = 9

Let (λ − 1)2 = u, we have 1 + 4u = (4u − 1)2 ⇒ u = 0 or 3
4 i.e. λ = 1 or 1 ±

√

3
2 (3 pts)

when λ = 1, y = −3, x = 0

when λ = 1 ±
√

3
2 , y = 3

2 , x = ±3
√

3
2

Critical points are (x, y) = (0,−3), (3
√

3
2 , 3

2), and (−3
√

3
2 , 3

2). (3 pts)

f(0,−3) = 9, f(3
√

3
2 , 3

2) = 9 + 27
√

3
4 , f(−3

√

3
2 , 3

2) = 9 − 27
√

3
4 .

f(−3
√

3

2
,
3

2
) < f(0,−3) < f(3

√
3

2
,
3

2
).

Hence the maximum value is f(3
√

3
2 , 3

2) = 9 + 27
√

3
4 .

The minimum value is f(−3
√

3
2 , 3

2) = 9 − 27
√

3
4 . (2 pts)

Method 2:
Note that if λ = 0, then (1) and (2) ⇒ (x, y) = (2,−1) but (3) is not satisfied. If y = 0, then
(2) implies that x is also 0, but (3) is not satisfied for (x, y) = (0,0).
Hence we conclude that λ ≠ 0 and y ≠ 0.
Therefore both sides of (2) are not zero.
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Then we can divide (1)
(2) .

(1)
(2) ⇒

2x + y + 3

x + 2y
= x
y
⇒ 2xy + y2 + 3y = x2 + 2xy

⇒ x2 = y2 + 3y plug in (3) ⇒ 2y2 + 3y = 9

⇒ y = 3

2
or − 3.

If y = 3
2 , x = ±3

√

3
2 . If y = −3, x = 0.

Hence critical points are (x, y) = (0,−3), (3
√

3
2 , 3

2) and (−3
√

3
2 , 3

2).

(c) Inside the disc x2 + y2 < 9, f(x, y, ) has a critical point (−2,1). f(−2,1) = −3.

On the boundary x2 + y2 = 9, f(x, y) obtains maximum f(3
√

3
2 , 3

2) = 9 + 27
√

3
4 .

because f(3
√

3
2 , 3

2) > f(−2,1) (or ∵ f(−2,1) is a local minimum) (2 pts)

∴ The maximum value of f on the region x2 + y2 ≤ 9 is f(3
√

3
2 , 3

2) = 9 + 27
√

3
4 . (1 pt)
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4. (18 pts) (a) (8 pts) Reverse the order of integration and evaluate it. ∫
4

0
∫

1

√
y

2

√
x3 + 3dxdy.

(b) (10 pts) Compute ∬
Ω

(ln y)−1dA, where Ω is bounded by y = ex and y = e
√

x.

1

Solution:

(a)

∫
4

0
∫

1

√
y/2

√
x3 + 3dxdy = ∫

1

0
∫

4x2

0

√
x3 + 3dy dx(4%)

= ∫
1

0
4x2

√
x3 + 3dx(2%)

= 4

3
⋅ 2

3
(x3 + 3)3/2∣

1

0

(1%)

= 8

9
(8 − 3

√
3) (1%)

= 64

9
− 8

3

√
3

(b)

y = ex⇒ x = ln y,

y = e
√

x⇒
√
x = ln y⇒ x = (ln y)2.

Then

∫ ∫
Ω
(ln y)−1 dA = ∫

e

1
∫

lny

(lny)2
(ln y)−1 dxdy(4%)

= ∫
e

1
(ln y)−1 (ln y − ln2 y) dy(3%)

= ∫
e

1
(1 − ln y)dy(2%)

= (e − 1) − (y ln y − y)∣e
1
(1%)

= e − 2.
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5. (18 pts) (a) (8 pts) Evaluate ∬
D

e−x
2
−y2dA, where D is the upper disc, x2 + y2 ≤ 25 and y ≥ 0.

(b) (10 pts) Calculate the area of the region inside the cardioid

r = 1 − sin θ.

-1.5-1.5 -1-1 -0.5-0.5 0.50.5 11 1.51.5

-2-2

-1.5-1.5

-1-1

-0.5-0.5

0.50.5

00

Solution:

(a) Note that
D = {[r, θ] ∶ 0 ≤ r ≤ 5, 0 ≤ θ ≤ π} (2%),

we have

∬
D
e−(x

2
+y2) dA = ∫

π

0
∫

5

0
e−r

2 ⋅ r dr dθ (4%)

= ∫
π

0
(−e

−r2

2
) ∣5

0
dθ (1%)

= π(1 − e−25)/2 (1%).

(b)

Area =∬
Ω

1dA = ∫
2π

0
∫

1−sin θ

0
r dr dθ (4%)

= ∫
2π

0

(1 − sin θ)2

2
dθ (1%)

= ∫
2π

0

1 − 2 sin θ + sin2 θ

2
dθ (1%)

= ∫
2π

0
(1

2
− sin θ + 1 − cos 2θ

4
) dθ (2%)

= 3

4
⋅ 2π = 3π

2
(2%).
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6. (12 pts) Evaluate ∬
D

exy dxdy, where D is bounded by curves xy = 10, xy = 20, x2y = 20 and

x2y = 40.

Solution:

Method 1: Let u = xy and v = x2y. Then x = v/u and y = u2/v (2%). Further, (x, y) maps

Ω = {(u, v) ∶ 10 ≤ u ≤ 20, 20 ≤ v ≤ 40}

to D (2%). Since

J(u, v) = ∣−v/u
2 2u/v

1/u −u2/v2∣ = −1/v (2%),

we have

∬
D
exy dxdy = ∫

20

10
∫

40

20
eu(∣ − v−1∣)dudv (4%)

= ∫
20

10
eu du ⋅ ∫

40

20
v−1 dv

= (e20 − e10) ln 2 (2%).

Method 2� Let u = xy and v = x2y (2%). Then (u, v) maps D to

Ω = {(u, v) ∶ 10 ≤ u ≤ 20, 20 ≤ v ≤ 40} (2%).

Since

J(x, y) = ∣y 2xy
x x2 ∣ = −x2y = −v (1%),

we have
J(u, v) = J(x, y)−1 = −v−1 (1%).

We have,

∬
D
exy dxdy = ∫

20

10
∫

40

20
eu(∣ − v−1∣)dudv (4%)

= ∫
20

10
eu du ⋅ ∫

40

20
v−1 dv

= (e20 − e10) ln 2 (2%).
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