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1. (8 pts) Let f be a continuous function on R such that

∫

x3

0
f(t)dt = x3 ⋅ cos(πx) for all x.

Find f(1).

Solution:

Since f is continuous on R, by Fundamental Theorem of Calculus (2%), we have

d

dx ∫
x3

0
f(t)dt =

d

dx
(x3 ⋅ cos(πx))

⇒ f(x3) ⋅ 3x2 (2%) = 3x2 ⋅ cos(πx) − πx3 ⋅ sin(πx) (1%)

To find f(1), we solve x3 = 1 to obtain that x = 1 (1%). For x = 1, we have

f(1) ⋅ 3 = 3 ⋅ cos(π) − π ⋅ sin(π) = −3 ⇒ f(1) = −1 (2%).
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2. (16 pts) Evaluate the following definite integrals.

(a) ∫
1

0

√
xdx

(1 +
√
x)4

.

(b) ∫
1

0
sin−1(

√
x)dx.

Solution:

Answer: Must show clearly the steps of substitution and integration by parts

(a) Method-1:

– (2%) Set y =
√

x⇒ dx = 2ydy⇒ ∫
1
0

√
x

(1+
√
x)4
dx = ∫

1
0

2y2

(1+y)4
dy

(1%) = 2 ∫
1
0

1−(1−y2)
(1+y)4

dy = 2 ∫
1
0 [

1
(1+y)4

−
(1−y)
(1+y)3

]dy

(2%) = 2 ∫
1
0 [

1
(1+y)4

−
2−(1+y)
(1+y)3

]dy = 2 ∫
1
0 [

1
(1+y)4

−
2

(1+y)3
+

1
(1+y)2

]dy

(2%) = −2[ 1
3(1+y)3

−
1

(1+y)2
+

1
(1+y)]

1
0 =

1
12 ⋯

Method-2:

– (2%) Set y = 1 +
√

x⇒ dx = 2(y − 1)dy

(3%) ⇒ ∫
1
0

√
x

(1+
√
x)4
dx = ∫

2
1

2(y−1)2

y4
dy = 2 ∫

2
1 [

1
y2
−

2
y3
+

1
y4

]dy

(2%) = −2[ 1y −
1
y2
+

1
3y3

]
2
1 =

1
12 ⋯

(b) Method-1:

– (2%) Set y =
√

x⇒ dx = 2ydy⇒ ∫
1
0 sin−1(

√

x)dx = ∫
1
0 sin−1(y)2ydy

(2%) = ∫
1
0 sin−1(y) (y2)′dy = [y2 sin−1(y)]10 − ∫

1
0

y2
√
1−y2

dy

(2%) = π
2 − ∫

1
0

1−(1−y2)
√
1−y2

dy = π
2 − ∫

1
0 [

1√
1−y2
+

√

1 − y2]dy

(2%) = π
2 − [sin−1(y)]10 + ∫

π/2
0 cos2(θ)dθ where y = sin θ

(1%) = 1
2[θ +

sin(2θ)
2 ]

π/2
0 =

π
4 ⋯

Method-2:

– (4%) Set y = sin−1(
√

x) ⇒ x = sin2(y) and dx = sin(2y)dy

(2%) ⇒ ∫
1
0 sin−1(

√

x)dx = ∫
π/2
0 y sin(2y)dy

(2%) = ∫
π/2
0 y (−

cos(2y)
2 )

′dy = −1
2 [y cos(2y)]

π/2
0 +

1
2 ∫

π/2
0 cos(2y)dy

(1%) = π
4 +

1
4[sin(2y)]

π/2
0 =

π
4 ⋯
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3. (13 pts)

(a) Decompose
x2 + 4x + 5

(x + 1)2(x2 + 2x + 3)
into partial fractions.

(b) Evaluate the indefinite integral ∫
x2 + 4x + 5

(x + 1)2(x2 + 2x + 3)
dx.

Solution:

(a) Let
x2 + 4x + 5

(x + 1)2(x2 + 2x + 3)
=

A

x + 1
+

B

(x + 1)2
+

Cx +D

x2 + 2x + 3
. (2 pts)

By clearing the denominator we have

x2 + 4x + 5 = A(x + 1)(x2 + 2x + 3) +B(x2 + 2x + 3) + (Cx +D)(x + 1)2. (1 pt)

By comparing the coefficients, we have

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

A +C = 0,
3A +B +2C +D = 1,
5A +2B +C +2D = 4,
3A +3B +D = 5,

(4 pts) ⇒

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

A = 1,
B = 1,
C = −1,
D = −1.

(1 pts)

Therefore, we get

x2 + 4x + 5

(x + 1)2(x2 + 2x + 3)
=

1

x + 1
+

1

(x + 1)2
+

−x − 1

x2 + 2x + 3
. (1 pt)

(b) By (a) we have the indefinite integral

x2 + 4x + 5

(x + 1)2(x2 + 2x + 3)
dx = ∫ [

1

x + 1
+

1

(x + 1)2
−

x + 1

x2 + 2x + 3
]dx (1 pt)

= ln ∣x + 1∣ −
1

x + 1
−

1

2
ln(x2 + 2x + 3) +C. (3 pts)
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4. (16 pts)

(a) Find the orthogonal trajectories of the family of curves y =K ⋅ tan2 x, where K is an arbitrary
constant.

(b) Solve the initial value problem : x(x + 1)
dy

dx
+ y = (x + 1)2 sinx cosx, y (

π

2
) = 0.

Solution:

(a) (i) The slope of each point on the family of curves is

dy

dx
=K ⋅ 2 tanx ⋅ sec2 x (2 pts) =

y

tan2 x
⋅ 2 tanx ⋅ sec2 x

= 2y ⋅ sec2 x ⋅ cotx =
2y

sinx ⋅ cosx
. (2 pts)

(ii) Solve
dy

dx
=
− sinx ⋅ cosx

2y
. (2 pts)

We have

dy

dx
=
− sinx ⋅ cosx

2y

⇒ ∫ 2ydy = ∫ (− sinx ⋅ cosx)dx =
−1

2 ∫
sin(2x)dx

⇒ y2 =
cos(2x)

4
+C. (2 pts)

The orthogonal trajectories of the family of curves y2 =
cos(2x)

4
+C.

(b) The standard form of the differential equation is

dy

dx
+

1

x(x + 1)
⋅ y =

x + 1

x
⋅ sinx ⋅ cosx.

Since
e∫

1
x(x+1)

dx
= e∫ (

1
x
− 1
x+1
)dx = eln ∣

x
x+1
∣ = ∣

x

x + 1
∣,

we can take the integration factor as I(x) = x
x+1 . (3 pts)

Then we have

I(x) ⋅ [
dy

dx
+

1

x(x + 1)
⋅ y] = I(x) ⋅ [

x + 1

x
⋅ sinx ⋅ cosx]

⇒ [
x

x + 1
⋅ y]′ = [I(x) ⋅ y]′ =

1

2
sin(2x)

⇒
x

x + 1
⋅ y = I(x) ⋅ y = ∫

1

2
sin(2x)dx =

−1

4
cos(2x) +C

⇒ y =
x + 1

x
⋅ [
−1

4
cos(2x) +C]. (3 pts)

Since y(π2 ) = 0, we get −1
4 = C. So the solution is y =

x + 1

x
⋅ [
−1

4
cos(2x) −

1

4
]. (2 pts)
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5. (14 pts) Let C be a curve whose parametrisation is given by

⎧⎪⎪
⎨
⎪⎪⎩

x = et cos t

y = et sin t
with 0 ≤ t ≤ π.

(a) Find the arclength of C.

(b) Find
dy

dx
in terms of t and find the point Q in x-y coordinates at which the tangent to C is

perpendicular to the x-axis.

Solution:

(a)

dx

dt
= et(cos t − sin t)

dy

dt
= et(sin t + cos t).

Arc length is then computed by the formula

∫

π

0

√

(
dx

dt
)2 + (

dx

dt
)2 dt = ∫

π

0

√
2et dt =

√
2(eπ − 1).

Grading Guideline. Arc length formula (including lower and upper limits) 3pt
differentiation computation 2pt
integral computation 2pt.

(b) With the computation above
dy

dx
=

sin t + cos t

cos t − sin t
.

Vertical tangents occur, if exists, when cos t− sin t = 0, that is t = π
4 . We need to check if it

is indeed a vertical tangent. We can either compute

±

lim
t→π

4

dy

dx
= ±∞

or just say the numerator is non-zero. Finally, converting it into cartesian coordinates, we
get Q = e

π
4 ( 1√

2
, 1√

2
).

Grading Guideline. dy
dx (2pt= chain rule (1pt) + computation (1pt))

vertical tangent (3pt)=denominator=0 (1pt)+t-value(1pt)+limit(1pt)
converting to cartesian coordinates (1pt).
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6. (10 pts) Consider two polar curves C1 and C2 defined by

C1 ∶ r
2 = 4 sin(4θ), C2 ∶ r

2 = 4 cos(2θ).

Find the area of the region that lies inside both C1 and C2.

Solution:

By symmetry, we compute the intersection of curves C1 and C2 when 0 ≤ θ ≤ π
4 .

{
r2 = 4 sin(4θ)
r2 = 4 cos(2θ),

⇒ 4 cos(2θ) ⋅ (sin(2θ) − 1) = 0 (2 pts)

⇒ cos(2θ) = 0 or sin(2θ) =
1

2

⇒ 2θ =
π

2
or

π

6
⇒ θ =

π

4
or

π

12
. (3 pts)

So we have

Area of the region inside C1 and C2

= 2 ⋅ [∫

π
12

0

1

2
⋅ 4 sin(4θ)dθ + ∫

π
4

π
12

1

2
⋅ 4 cos(2θ)dθ] (3 pts)

= (− cos(4θ)) ∣

π
12

0

+(2 sin(2θ)) ∣

π
4

π
12

= (−
1

2
+ 1) + 2(1 −

1

2
) =

3

2
. (2 pts)
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7. (10 pts) The ellipse

x2 +
y2

5
= 1

is rotated about the x-axis to form a surface called an oblate spheroid. Find the surface area of this
oblate spheroid.

Solution:

Marking scheme.
(2M) *Evaluation of ds
(2M) ** Integrand
(1M) Integration limits
(2M) ***Convert the integral into C ⋅ ∫ sec3 θdθ by a suitable substitution
(2M) ****Correct evaluation of ∫ sec3 θdθ
(1M) Correct answer

Partial credits.
(*) 1M is awarded as long as the candidate attempts to compute ds
(**) Here a candidate will receive at most 1M for

� making mistakes up to a constant factor

� mentioning ∫ 2πy ⋅ ds (or any equivalent form)

(***) 1M is taken away if a student makes mistakes in the integration limits after conducting
a substitution
(****) No derivation is required. At most 1M can be awarded to a candidate with an incorrect
evaluation who (1) attempts to derive ∫ sec3 θdθ or (2) makes minor/obvious typos.

Sample Solution 1.
One can obtain an ellipsoid by using the upper half of the ellipse y =

√
5(1 − x2) for which

dy

dx
=
√

5 ⋅
−x

√
1 − x2

and
√

1 + (
dy

dx
)

2

=

√

1 +
5x2

1 − x2
=

√
1 + 4x2

1 − x2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(2M)

By symmetry, the surface area is given by

2 ⋅ ∫
1

0
2π

√
5(1 − x2)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
y

√
1 + 4x2

1 − x2
dx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ds

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(3M)

= 4
√

5π∫
1

0

√
1 + 4x2dx

To evaluate ∫
√

1 + 4x2dx, we substitute x = 1
2 tan θ, then

∫

√
1 + 4x2dx =

1

2 ∫
sec3 θdθ (2M)

=
1

4
(sec θ tan θ + ln ∣ sec θ + tan θ∣) +C (2M)

=
1

4
(2x

√
1 + 4x2 + ln(2x +

√
1 + 4x2)) +C
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Hence, the surface area equals to
√

5π(2
√

5 + ln(2 +
√

5)). (1M)

Sample Solution 2 (Parametric way).
The ellipse can be parametrised by x = cos t and y =

√
5 sin t.

Then

√

(
dx

dt
)

2

+ (
dy

dt
)

2

=
√

sin2 t + 5 cos2 t =
√

1 + 4 cos2 t
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(2M)

.

By symmetry, the surface area thus equals to

2 ⋅ ∫
π/2

0
2π

√
5 sin t

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
y

√
1 + 4 cos2 tdt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ds

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(3M)

= 4
√

5π∫
π/2

0
sin t

√
1 + 4 cos2 tdt

To evaluate ∫ sin t
√

1 + 4 cos2 tdt, we let 2 cos(t) = tan θ

∫ sin t
√

1 + 4 cos2 tdt = −
1

2 ∫
sec3 θdθ (2M)

= −
1

4
(sec θ tan θ + ln ∣ sec θ + tan θ∣) +C (2M)

= −
1

4
(2 cos t

√
1 + 4 cos2 t + ln(2 cos t +

√
1 + 4 cos2 t)) +C

Hence, the surface area equals to
√

5π(2
√

5 + ln(2 +
√

5)). (1M)

Alternative form of the final answer : 10π +
√

5π ln(2 +
√

5).
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8. (13 pts) Consider the region bounded by the curve y =
1

√
e2x + 1

, the x-axis and x = 1.

(a) Find the volume of the solid obtained by revolving the region about the x-axis.

(b) Student A claims that ‘The volume of the solid obtained by revolving the region about the y-axis
is also finite.’. Give a proof to Student A’s claim by using the comparison test for improper
integrals.

Solution:

(a)

Marking scheme.
(2M) *Integrand
(1M) Integration limits
(1M) Writing down the definition of improper integrals
(3M) **Using a suitable substitution to evaluate the integral
(1M) Correct answer

Partial credits.
(*) At most 1M is taken away for any missing/extra scalar factors.
(**) A candidate will receive

� 2M for having done a correct substitution but incomplete evaluation of the
integral

� 3M as long as he/she integrates ∫
b

a
1

e2x+1dx correctly - does not matter his/her
choice of integration limits.

Sample solution.
By disk method, the volume of the solid equals to

∫

∞

1
π ⋅

1

e2x + 1
dx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(2+1M)

= lim
t→∞
∫

t

1
π ⋅

1

e2x + 1
dx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(1M)

.

To evaluate ∫
1

e2x + 1
dx, we let u = e2x. Then

∫
1

e2x + 1
dx =

1

2 ∫
du

u(u + 1)
=

1

2 ∫
1

u
−

1

u + 1
du =

1

2
ln ∣

u

u + 1
∣ +C =

1

2
ln ∣

e2x

e2x + 1
∣ +C

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(3M)

.

Hence, the volume equals to

lim
t→∞

π

2
(ln

e2t

e2t + 1
− ln

e2

e2 + 1
) = π (

1

2
ln(e2 + 1) − 1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(1M)

.
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Alternative form of the final answer : −
π

2
ln

e2

e2 + 1
=
π

2
ln
e2 + 1

e2
= π ln

√
e2 + 1

e2
.

(b)

Marking scheme.
(2M) *Setting up the correct integral
(1M) Any correct upper bound for x√

e2x+1

(2M) **Correct argument using the comparison test

Partial credits.
(*) At most 1M is taken away for any missing/extra scalar factors.
(**) 1M can be awarded to candidates with an incorrect upper bound, but with
some attempts of an argument using the comparison test.

In an extreme situation that a candidate didn’t set up a correct integral (not
of the form C ⋅ ∫

x√
e2x+1

dx) but demonstrated some understandings of the comparison

test, at most 1M will be awarded.

Sample solution.

By shell method, the volume of the solid equals to ∫
∞

1
2πx ⋅

1
√
e2x + 1

dx. (2M)

Since 0 ≤
x

√
e2x + 1

≤
x

ex
(1M)

and ∫
∞

1

x

ex
dx = lim

t→∞
∫

t

1

x

ex
dx = lim

t→∞
(−te−t − e−t + 2e−1) = 2e−1 is convergent, (2M)

the comparison test implies that ∫
∞

1

x
√
e2x + 1

dx is convergent. This verifies the claim of

Student A.

Alternative argument.

By shell method, the volume of the solid equals to ∫
∞

1
2πx ⋅

1
√
e2x + 1

dx. (2M)

Since 0 ≤
x

√
e2x + 1

≤
1

x2
for x sufficiently large (1M)

and ∫
∞

1

1

x2
dx converges as a p-integral with p > 1, (2M)

the comparison test implies that ∫
∞

1

x
√
e2x + 1

dx is convergent. This verifies the claim of

Student A.

Remark. 1/x2 can be replaced by 1/xp for any p > 1 in the above argument.
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