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1. (18%) (a) (4%) Compute lim
x→∞

[x]

x
, where [⋅] is the greatest integer function.

(b) (4%) Compute lim
x→0−

x
√

1 − coskx
, where k > 0 is a constant.

(c) (4%) Compute lim
x→0

(cscx −
1

ex − 1
).

(d) (6%) Find constants a, b ∈ R such that a ≠ 0, b > 0 and lim
x→0+

(cosx)a/x
b

= 3.

Solution:

(a) Since x − 1 < [x] ≤ x
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(3%)

, by Squeeze Theorem, the limit equals to 1
®
(1%)

.

(b)

lim
x→0−

x
√

1 − coskx
= lim
x→0−

x
√

1 + cos(kx)

∣ sin(kx)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(2%)

=
√

2
°
(1%)

⋅ lim
x→0−

x

∣ sin(kx)∣
=
√

2 ⋅ lim
x→0−

x

− sinkx
= −

√
2

k
²
(1%)

Remark. -1% for omitting the absolute value.

(c)

lim
x→0

(cscx −
1

ex − 1
) = lim

x→0

ex − 1 − sinx

(sinx)(ex − 1)

[
0
0
],L’H
= lim

x→0

ex − cosx

(ex − 1) cosx + ex sinx
(2%)

[
0
0
],L’H
= lim

x→0

ex + sinx

−(ex − 1) sinx + 2ex cosx + ex sinx

=
1

2
(2%)

(d) We need to solve lim
x→0+

a ln(cosx)

xb
= ln 3. (2%)

It is a 0
0 form since b > 0. Apply L’Hospital’s Rule to study

lim
x→0+

a

b

− sinx

(cosx)xb−1
= −

a

b
lim
x→0+

sinx

xb−1
= ln 3 (2%)

Clearly b = 2
±
(1%)

, a = −b ln 3 = −2 ln 3
´¹¹¹¹¹¸¹¹¹¹¹¶
(1%)

.
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2. (8%) Compute the following derivatives.

(a) (4%)
d

dx
(22x + xx

2
).

(b) (4%)
d

dx
(tan−1 (

x

a
) + ln

√
x + a

x − a
), where a ≠ 0 is a constant.

Solution:

(a) By the chain rule
d

dx
(22x) = (ln 2)22x ⋅ 22x (2 pts)

Let f(x) = xx
2
. ln ∣f(x)∣ = x2 ⋅ ln ∣x∣...(*)

d
dx(*) ⇒ f ′(x)

f(x) = 2x ln ∣x∣ + x

(1 pt for trying to do logarithmic differentiation. e.g. compute ln ∣f(x)∣, and know that
d
dx ln ∣f(x)∣ = f ′(x)

f(x) .)

⇒ f ′(x) = xx
2
(2x ln ∣x∣ + x) (1 pt)

(It is O.K. to write lnx instead of ln ∣x∣. Because the domain of f(x) is {x∣x > 0}.)

(b) d
dx

(tan−1 (xa)) =
1

1+(x
a
)
2 ×

1
a =

a
x2+a2

(2 pts.

Wrong ans: d
dx

(tan−1 (xa)) =
1

1+(x
a
)
2 =

a2

x2+a2 ⇒ 1 pt)

Compute d
dx ln

√
x+a
x−a .

sol 1: ln
√

x+a
x−a is defined for ∣x∣ > ∣a∣.

For ∣x∣ > ∣a∣, ln
√

x+a
x−a =

1
2(ln ∣x + a∣ − ln ∣x − a∣)

d
dx

(ln
√

x+a
x−a

) = 1
2
d
dx(ln ∣x + a∣ − ln ∣x − a∣) = 1

2
( 1
x+a −

1
x−a

) = −a
x2−a2 (2 pts)

sol 2:
d
dx

(ln
√

x+a
x−a

) = 1
√

x+a
x−a

d
dx

(
√

x+a
x−a

) = 1
2
x−a
x+a

−2a
(x−a)2 =

−a
x2−a2 (2 pts)

Hence d
dx

(tan−1 (xa) + ln
√

x+a
x−a

) = a [ 1
x2+a2 −

1
x2−a2

] = −2a3

x4−a4
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3. (10%) (a) (6%) Suppose that f(x) ≤ g(x) ≤ h(x) and f(x), h(x) are differentiable at a with
f(a) = h(a), f ′(a) = h′(a). Show that g(x) is differentiable at a and find g′(a).

(b) (4%) Give an example of functions f(x), g(x), and h(x) such that f(x) ≤ g(x) ≤ h(x),
f ′(a) = h′(a) but g(x) is not differentiable at a.

Solution:

(a) (+1) First we show that g(a) = f(a) = h(a). Since f(x) ≤ g(x) ≤ h(x) with f(a) = h(a),
we have g(a) = f(a).

(Use squeeze lemma, but do not carefully distinguish the sign: (+3))

We compute limx→a+
g(x)−g(a)

x−a . For x > a, we have

f(x) − f(a)

x − a
≤
g(x) − g(a)

x − a
≤
h(x) − h(a)

x − a

followed by f(x) ≤ g(x) ≤ h(x), f(a) = g(a) = h(a) and x − a > 0. Since the limx→a+ of the
left and right terms in the above inequalities exist and equal f ′(a) = h′(a), this forces that

limx→a+
g(x)−g(a)

x−a exists and equals f ′(a) = h′(a).

For limx→a−
g(x)−g(a)

x−a , one repeats the argument with the reversed inequalities

f(x) − f(a)

x − a
≥
g(x) − g(a)

x − a
≥
h(x) − h(a)

x − a
.

We conclude that g(x) is differentiable at a and g′(a) = f ′(a).

(b) For example,
f(x) = x − 1, g(x) = [x], h(x) = x

and a is any integer. Then f ′(x) = 1 = h′(x) but g(x) is not differentiable at a since it is
not continuous at a.

(Sketch a graph without explanation: (+2); sketch a graph with correct explanations:
(+4).)
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4. (12%) An observer stands at point P which is one meter from a straight path. Let O be the point
on the path that is closest to P , and S be the point on the path that is one meter to the right of
O. Two runners A and B start at S and run away from O along the path. Let θ be the observer’s
angle of sight between the runners.

(a) (6%) Suppose that when A and B start at S, dθdt =
1
4 rad/sec. Find the relative velocity between

A and B at S.

(b) (6%) Suppose that A runs twice as fast as B. Find the maximum value of θ.

x

y

P

S B AO

θ

1 m

1 m

Solution:

(a) Suppose that at time t(sec), A is A(t) meters to the right of O and B is B(t) meters to
the right of O. Then A(0) = B(0) = 1.
θ(t) = tan−1A(t) − tan−1B(t).
(3 pts for assigning notations and the correct equation.)
dθ
dt =

A′(t)
1+(A(t))2 −

B′
(t)

1+(B(t))2

(2 pts for differentiation)

At t = 0, dθ
dt =

1
4 =

A′(0)
1+(A(0))2 −

B′
(0)

1+(B(0))2 =
1
2(A

′(0) −B′(0))

i.e. A′(0) = B′(0) = 1
2 m/s. (1 pt for plugging in t = 0)

Ans: The relative velocity between A and B at point S is 1
2 m/s.

(b) Sol 1:
When B is x meters to the right of S, A is 2x meters to the right of S.
θ(x) = tan−1(2x + 1) − tan−1(x + 1) for x > 0.
(2 pts for assigning notations and deriving the correct equation with correct domain.)
dθ
dx =

2
1+(2x+1)2 =

1
1+(x+1)2 =

−2x2+2
(4x2+4x+2)(x2+2x+2) ,

dθ
dx = 0 ⇒ x = ±1
(2 pts for computing dθ

dx . 1 pt for solving dθ
dx = 0.)

dθ
dx > 0 for 0 < x < 1 and dθ

dx < 0 for x > 1.
Hence θ obtains the absolute maximum when x = 1 i.e. when B is 1 meter and A is 2
meters to the right of S.
(1 pt for explaining that the critical number is the absolute maximum.)

Sol 2:
Suppose that the velocity of B is v m/s and the velocity of A is 2v m/s.
Then offer t seconds B is 1+vt meters to the right of O and A is 1+2vt meters to the right
of O.
θ(t) = tan−1(1 + 2vt) − tan−1(1 + vt) for t > 0.
(2 pts for assigning notations and deriving the correct equation with correct domain.)
dθ
dt =

2v
1+(1+2vt)2 −

v
1+(1+vt)2 = v [

−2v2t2+2
(1+(1+2vt))2(1+(1+vt))2 ] (2 pts)

dθ
dt = 0 ⇒ vt = ±1 (1 pt)
dθ
dt > 0 for 0 < vt < 1, dθ

dt < 0 for vt > 1.
Hence θ obtains the absolute maximum when vt = 1 i.e. when B is 2 meters to the right of
O and A is 3 meters to the right of O. (1 pt)
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5. (14%) Consider the equation y5 + 1.009y3 + y = 3.

(a) (6%) Show that the equation has exactly one real solution.

(b) (4%) Given y5 + xy3 + y = 3, find dy
dx at (1,1).

(c) (4%) Use a linear approximation to estimate the real root of y5 + 1.009y3 + y = 3.

Solution:

(a) Let g (y) = y5 + 1.009y3 + y − 3. Since

lim
y→∞

g (y) = ∞, lim
y→−∞

g (y) = −∞,

the Intermediate Value Theorem implies that g has real roots. (3 points)

Moreover, since
g′ (y) = 5y4 + 3.027y2 + 1 > 0,

g is strictly increasing. In particular, g has at most one real root. (3 points)

(b) By the argument in (a), y is implicitly defined as a function of x via the equation

y5 + xy3 + y = 3

near (x, y) = (1,1). Differentiating both sides of the above equation with respect to x gives

(5y4 + 3xy2 + 1)
dy

dx
+ y3 = 0 (3 points) .

Substituting (x, y) = (1,1) into the above equation gives

dy

dx
∣
(x,y)=(1,1)

= −
1

9
. (1 point)

(c) Let’s denote y = f (x). Note that f (1) = 1 and f ′ (1) = −1
9 . (2 points) Then

f (1.009) ≈ f (1) + f ′ (1) ∗ 0.009 = 1 −
1

9
∗ 0.009 = 0.999 (2 points) .
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6. (18%) Suppose that f is differentiable and one-to-one on (−1,1), f ′(x) = 1 + f 2(x), and lim
x→0

f(x)
x

exists.

(a) (4%) Find f(0) and lim
x→0

f(x)
x .

(b) (4%) Show that f(x) is increasing on (−1,1) and determine the concavity of y = f(x) on
(−1,1).

(c) (6%) Prove that f(x) ≥ x for x ∈ (0,1). Then prove that f(x) ≥ x + x3

3 for x ∈ (0,1).

(d) (2%) Find d
dx(f

−1(x)).

(e) (2%) Find f−1(x) and f(x).

Solution:

(a) Let L = lim
x→0

f(x)
x . Since f is differentiable, it is continuous. Therefore,

f(0) = lim
x→0

f(x) = lim
x→0

f(x)

x
⋅ x = L ⋅ 0 = 0,

and hence

lim
x→0

f(x)

x
= lim
x→0

f(x) − f(0)

x − 0
= f ′(0) = 1 + f(0)2 = 1.

- Búf(0) = 0ï�1��

- 	Ð0f#�'��nlim
x→0

f(x)ï�1��

- Búlim
x→0

f(x)
x = 1ï�1��

- ëú�0lim
x→0

f(x)
x = 1��1��K(�x�©�cº�(L’HôpitalÕG	ï�1��

(b) Since f ′(x) = 1 + f(x)2 ⩾ 1 > 0, f is (strictly) increasing. To determine the concavity of f ,
we compute the 2nd derivative of f :

f ′′ = (f ′)′ = (1 + f 2)′ = 2ff ′.

f ′′(x) and f(x) have the same sign for every x ∈ (−1,1) since f ′(x) > 0. We have obtained
in (a) that f(0) = 0. Therefore f(x) > 0 resp. < 0 if x ∈ (0,1) resp. (−1,0), as shows that f
is concave upward resp. downward on (0,1) resp. (−1,0).

- �úf ′ > 0&1d�úF ↗↗ï�2��

- )(f ′ = 1 + f 2���f ′′&��åd$·ù��ï�1��

- f ′′���cº�$·ù���1¦cºï��1��

(c) Consider the function h(x) = f(x) − x. By (a) and (b) we have

h(0) = f(0) = 0 = 0 and h′(x) = f ′(x) − 1 = f(x)2 > 0,

and hence h is increasing on [0,1) and f(x) − x = h(x) > h(0) = 0 for x ∈ (0,1). Now

consider g(x) = f(x) − x − x3

3 . We have

g(0) = f(0) − 0 = 0 and g′(x) = f ′(x) − 1 − x2 = f(x)2 − x2 > 0 (x ∈ (0,1)),

where the last inequality holds by the first part of (c), as we just obtained. Therefore,

f(x) − x − x3

3 = g(x) > g(0) = 0 for every x ∈ (0,1).
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- �G
,���è��T3��

(d) We have

(f−1)′(x) =
1

f ′(f−1(x))
=

1

1 + f(f−1(x))
2 =

1

1 + x2
.

- �ú(f−1)′(x) = 1

f ′(f−1(x))
ï�1��

- ��cº1��

(e) From the result of (d) we see that f−1 is a function whose derivative is 1
1+x2 . We know one

such function, namely, tan−1 x, and hence the derivative of f−1(x)−tan−1 x is 0. A function
on an interval with derivative 0 everywhere is a constant function by the mean value
theorem. Therefore, f−1(x) = tanx+C for some constant C. Finally, C = f−1(0)−tan−1 0 =
0, and hence f−1(x) = tan−1 x and f(x) = tanx.

- Ð0f−1(x) = tanxï�1��

- 	�n8xC�Uz��ï��1��
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7. (20%) Let f(x) = x(ln ∣x∣)2.

(a) (2%) Find the domain of f(x). Is f an odd function or even function?

(b) (2%) Compute lim
x→0

f(x).

(c) (4%) Compute f ′(x). Find the interval(s) of increase and interval(s) of decrease of f(x).

(d) (2%) Find local maximum and local minimum values of f(x).

(e) (4%) Compute f ′′(x). Find the interval(s) on which f(x) is concave upward. Find the
interval(s) on which f(x) is concave downward.

(f) (2%) Find the point(s) of inflection of y = f(x).

(g) (1%) Find the asymptote(s) (vertical, horizontal, or slant) of y = f(x).

(h) (3%) Sketch the graph of f(x).

Solution:

(a) f is defined on R ∖ {0}. (1 point)

Since f (−x) = −f (x), f is an odd function. (1 point)

(b)

lim
x→0+

f (x) = lim
x→0+

⎛

⎝

lnx
1

√
x

⎞

⎠

2

= lim
x→0+

4
⎛

⎝

ln 1
√
x

1
√
x

⎞

⎠

2

= lim
y→∞

4(
ln y

y
)

2

= 0. (2 points)

Since f is odd, we have
lim
x→0−

f (x) = − lim
x→0+

f (x) = 0.

Thus, limx→0 f (x) = 0.

(c)
f ′ (x) = (ln ∣x∣)

2
+ 2 ln ∣x∣ = ln ∣x∣ (ln ∣x∣ + 2) . (2 points)

So f is increasing on (−∞,−1) ∪ (−e−2,0) ∪ (0, e−2) ∪ (1,∞) and decreasing on (−1,−e−2) ∪
(e−2,1). (2 points)

(d) By the First Derivative Test, f has local maxima

f (−1) = 0, f (e−2) = 4e−2 (1 point)

and local minima
f (−e−2) = −4e−2, f (1) = 0. (1 point)

(e)

f ′′ (x) =
2

x
ln ∣x∣ +

2

x
=

2

x
(ln ∣x∣ + 1) . (2 points)

So f is concave upward on (−e−1,0) ∪ (e−1,∞) and concave downward on (−∞,−e−1) ∪
(0, e−1). (2 points)

(f) The inflection points of the graph of f are (−e−1,−e−1), (0,0), and (e−1, e−1). (2 points)

(g) Obviously there is no vertical asymptotes. Since

lim
x→±∞

f (x)

x
= lim
x→±∞

(ln ∣x∣)
2
= ∞,

f has no horizontal or slant asymptotes. (1 point)

Page 8 of 9



(h) (3 points)
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