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1. (20%) As a financially independent NTU student, you spend 8 hours at school and need 8 hours of sleep every day.
This leaves you 8 hours of time to allocate between studying t1 hours at the K-book center, singing for t2 hours at
the KTV, and teaching t3 hours hours as a private tutor for high school kids. Suppose that the price of staying at
the K-book center is p1 dollars per hour, the price of singing at the KTV is p2 dollars per hour, and your hourly
wage as a private tutor is w dollars. Then, your consumer problem has both a time constraint t1 + t2 + t3 = 8 and a
budget constraint p1t1 + p2t2 = wt3. Suppose that your utility function is f(t1, t2, t3) = 1

2
ln t1 + 1

2
ln t2.

(a) (14%) Find t∗1, t∗2 and t∗3 that maximizes the utility f(t1, t2, t3). Find the maximum utility f(t∗1, t∗2, t∗3). Write
your answers in terms of p1, p2, and w.

(b) (6%) If your hourly wage w increases, find the rate of change for the maximum utility f(t∗1, t∗2, t∗3) with respect
to w. i.e. compute ∂

∂w
f(t∗1, t∗2, t∗3). Write your answer in terms of p1, p2, and w.

Solution:

(a) Solution 1:

Let g(t1, t2, t3) = t1 + t2 + t3, h(t1, t2, t3) = p1t1 + p2t2 −wt3
We want to find the maximum value of f(t1, t2, t3) = 1

2
ln t1 + 1

2
ln t2 under constraints g = 8, h = 0.

By the method of Lagrange multipliers, we solve the system of equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ft1 = λgt1 + µht1
ft2 = λgt2 + µht2
ft3 = λgt3 + µht3
g = 8

h = 0

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

1
t1
= λ + p1µ⋯ ⋅ 1O

1
2

1
t2
= λ + p2µ⋯⋯ 2O

0 = λ − µw⋯⋯ 3O

t1 + t2 + t3 = 8⋯⋯ 4O

p1t1 + p2t2 −wt3 = 0⋯⋯ 5O

(5pts for correct setting and equations.)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3O⇒ λ = µ ⋅w
1O⇒ t1 = 1

2µ(w+p1)

2O⇒ t2 = 1
2µ(w+p2)

4O ×w + 5O⇒ (w + p1)t1 + (w + p2)t2 = 8w⇒ 1
u
= 8w.Hence t1 = 4w

w+p1
, t2 = 4w

w+p2

5O⇒ t3 = 4p1
w+p1

+ 4p2
w+p2

(7 pts for solving equations)

Hence we have only one solution (t∗1, t∗2, t∗3) = ( 4w
w+p1

, 4w
w+p2

, 4p1
w+p1

+ 4p2
w+p2

)
with µ = 1

8w
, λ = 1

8
.

We know that f should obtain maximum value on the constraint set. Therefore f(t∗1, t∗2, t∗3) is the maximum

utility f(t∗1, t∗2, t∗3) = 1
2

ln ( 4w
w+p1

) + 1
2

ln ( 4w
w+p2

).

(2 pts for correct answers)

Solution 2:

Solve

⎧⎪⎪⎨⎪⎪⎩

t1 + t2 + t3 = 8

p1t1 + p2t2 = wt3
⇒

⎧⎪⎪⎨⎪⎪⎩

(p2 − p1)t1 = 8p2 − (w + p2)t3
(P2 − P1)t2 = −8p1 + (w + p1)t3

⇒ t1 = 8p2
p2−p1

− w+p2
p2−p1

t3, t2 = −8p1
p2−p1

+ w+p1
p2−p1

t3.

f(t1, t2, t3) =
1

2
ln t1 +

1

2
ln t2 =

1

2
ln( 8p2

p2 − p1
− w + p2
p2 − p1

t3) +
1

2
ln( −8p1

p2 − p1
+ w + p1
p2 − p1

t3)

is a function of single variable t3.
Find t3 such that the above function is maximized. . . . . . . 6pts
Solve the correct answer 8pts.

(b) ∂
∂w
f(t∗1, t∗2, t∗3) 1

2
( 1
w
− 1
w+p1

) + 1
2
( 1
w
− 1
w+p2

) = 1
w
− 1

2
( 1
w+p1

) − 1
2
( 1
w+p2

) . . . . . . 6pts
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2. (16%) We define the improper integral over the entire plane R2

I =∬
R2
e−

1
2 (x

2
+y2)dA as lim

a→∞
∬

Da

e−
1
2 (x

2
+y2)dA,

where Da is the disk with radius a and center the origin.

(a) (10%) Find ∬
Da

e−
1
2 (x

2
+y2)dA. Compute lim

a→∞
∬

Da

e−
1
2 (x

2
+y2)dA

(b) (6%) The integral I can be also defined as lim
a→∞
∬

Sa

e−
1
2 (x

2
+y2)dA, where Sa = [−a, a] × [−a, a]. From (a),

Compute ∫
∞

−∞

e−
1
2x

2

dx.

Solution:

(a)

∬
Da

e−
1
2 (x

2
+y2)dA = ∫

2π

0
∫

a

0
e−

1
2 r

2

rdrdθ (2 points for writing down this)

= ∫
2π

0
∫

r=a

r=0
e−

1
2 r

2

d(1

2
r2)dθ (2 points for this change of variables)

= 2π(−1)e− 1
2 r

2

∣
r=a

r=0

= −2πe−
1
2a

2

+ 2π (3 points for obtaining this)

∴ lim
a→∞
∬

Da

e−
1
2 (x

2
+y2)dA = lim

a→∞
(−2πe−

1
2a

2

+ 2π) = 2π (3 points)

(b)

I = lim
a→∞
∬

Sa

e−
1
2 (x

2
+y2)dA

= lim
a→∞
∫

a

−a
∫

a

−a
e−

1
2 (x

2
+y2)dxdy (2 points)

= lim
a→∞
∫

a

−a
e−

1
2x

2

dx∫
a

−a
e−

1
2y

2

dy = ∫
∞

−∞

e−
1
2x

2

dx∫
∞

−∞

e−
1
2y

2

dy (2 points)

∴ ∫
∞

−∞
e−

1
2x

2

dx =
√

2π (2 points)
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3. (24%) Evaluate∬
R

sin(y − x
y + x) dA, where R is the trapezoidal region with vertices (1,1), (2,2),(0,2), and (0,4) by

answering the following questions:

(a) (6%) Let u = y − x, v = y + x. Find the Jacobian
∂(x, y)
∂(u, v) .

(b) (6%) Plot the region S in the uv-plane corresponding to R and label all the vertices of it.

(c) (12%) Evaluate ∬
R

sin(y − x
y + x) dA.

Solution:

(a) u = y − x, v = y + x Ô⇒ x = 1
2
(v − u), y = 1

2
(u + v) (2pts) Ô⇒ ∂(x, y)

∂(u, v) = ∣
−1
2

1
2

1
2

1
2

∣ = −1
2

. (4pts)

(b) � (1pt) The equation of the line passing through (1,1) and (2,2) is y − x = 0 Ô⇒ u = 0.

� (1pt) The equation of the line passing through (1,1) and (0,2) is y + x = 2 Ô⇒ v = 2.

� (1pt) The equation of the line passing through (0,2) and (0,4) is x = 0 Ô⇒ 1
2
(v−u) = 0 Ô⇒ u−v = 0.

� (1pt) The equation of the line passing through (0,4) and (2,2) is y + x = 4 Ô⇒ v = 4

(2pts) The vertices of the trapezoidal region are (0,2), (2,2), (4,4), and (0,4).

(c) ∬
R

sin(y − x
y + x) dA

= ∫
4

2
∫

u=v

u=0
sin(u/v) ∣−1

2
∣ dudv (3pts)

= ∫
4

2
−v

2
cos(u/v)∣

u=v

u=0
dv (3pts)

= ∫
4

2

v

2
(1 − cos 1) dv (3pts)

= 3 (1 − cos 1). (3pts)
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