1082 微積分4-在經濟商管的應用 期考詳解及評分標準

- 1. (10%) Read the following statements. Answer "True" if it is correct. Answer "False" if it is incorrect.
 - (a) (2%) True A is an $n \times m$ matrix. The dimension of A's column space equals the dimension of A's row space.
 - (b) (2%) <u>True</u> A is an $n \times n$ matrix. If $\det A = 0$, then 0 is an eigenvalue of A.
 - (c) (2%) True A is an $n \times m$ matrix. The rank of A is less than or equal to n. The rank of A is less than or equal to m.
 - (d) (2%) <u>False</u> The set $S = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} -1\\3\\-2 \end{bmatrix}, \begin{bmatrix} 1\\7\\4 \end{bmatrix} \right\}$ is a basis for \mathbb{R}^3 .
 - (e) (2%) <u>False</u> B is a $k \times n$ matrix. Suppose that there is a $\mathbf{x_0} \neq \mathbf{0}$, $\mathbf{x_0} \in \mathbb{R}^n$ such that $B\mathbf{x_0} = \mathbf{0}$. Then B is not full rank.

- 2. (18%) Consider the quadratic form $f(x, y, z) = -2x^2 + 2xy 2y^2 5z^2$.
 - (a) (3%) Express f in the form of

$$f(x,y,z) = (x,y,z) M \begin{pmatrix} x \\ y \\ z \end{pmatrix},$$

where M is a real-valued symmetric 3×3 matrix. Find M.

- (b) (6%) Find the eigenvalues of M and their corresponding eigenvectors.
- (c) (4%) Diagonalize M. That is, find a nonsingular matrix P and a diagonal matrix D such that $P^{-1}MP = D$.
- (d) (5%) Use Sylvester's criterion to determine the definiteness of M, and thus f.

Solution:

(a)
$$M = \begin{pmatrix} -2 & 1 & 0 \\ 1 & -2 & 0 \\ 0 & 0 & -5 \end{pmatrix}$$
. (3pts)

(b)

$$0 = \det \begin{pmatrix} -2 - \lambda & 1 & 0 \\ 1 & -2 - \lambda & 0 \\ 0 & 0 & -5 - \lambda \end{pmatrix}$$
 characteristic polynomial
$$= (-5 - \lambda) \left((-2 - \lambda)^2 - 1 \right)$$
 expand
$$= (-5 - \lambda) \left(\lambda^2 + 4\lambda + 3 \right)$$
 expand
$$= -(\lambda + 5) \left(\lambda + 1 \right) \left(\lambda + 3 \right)$$
 factor
$$\lambda = -5, -1, -3$$
 solve (3pts)

$$(1) \ \lambda = -5 \implies \left(\begin{array}{ccc} -2+5 & 1 & 0 \\ 1 & -2+5 & 0 \\ 0 & 0 & -5+5 \end{array} \right) \left(\begin{array}{c} x \\ y \\ z \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right)$$

$$\implies$$
 eigenvector is $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = t \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ for any $t \in \mathbb{R}$ with $t \neq 0$. (1pt)

$$(2) \lambda = -3 \implies \begin{pmatrix} -2+3 & 1 & 0 \\ 1 & -2+3 & 0 \\ 0 & 0 & -5+3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\implies$$
 eigenvector is $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = s \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ for any $s \in \mathbb{R}$ with $s \neq 0$. (1pt)

(3)
$$\lambda = -1 \implies \begin{pmatrix} -2+1 & 1 & 0 \\ 1 & -2+1 & 0 \\ 0 & 0 & -5+1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\implies$$
 eigenvector is $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = r \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ for any $r \in \mathbb{R}$ with $r \neq 0$. (1pt)

(c)
$$P = \begin{pmatrix} 0 & 1 & 1 \\ 0 & -1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
 (2pts) $\implies P^{-1}MP = \begin{pmatrix} -5 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -1 \end{pmatrix} = D.$ (2pts)

(d) M is negative definite (2pts), and thus f, since (3pts)

$$-2 < 0$$
, det $\begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix} = 3 > 0$, det $M = -15 < 0$.

- 3. (20%) Find the maximum value of the function $f(x,y) = x^2 + 2y^2$ subject to the constraints $x + 2y \le 9$, $x^2 + y^2 \ge 16$, $x \ge 0$ and $y \ge 0$.
 - (a) (2%) Could both constraints $x + 2y \le 9$ and $x^2 + y^2 \ge 16$ be binding?
 - (b) (2%) Check whether the Kuhn Tucker version NDCQ is satisfied.
 - (c) (2%) Write down the Kuhn Tucker version Lagrangian function \tilde{L} .
 - (d) (3%) Write down the Kuhn Tucker version first order conditions.
 - (e) (4%) Is there a solution such that the constraint $x^2 + y^2 \ge 16$ is binding?
 - (f) (5%) Find solution(s) such that the constraint $x + 2y \le 9$ is binding.
 - (g) (2%) Find the maximum value.

Let $g_1(x,y) = x + 2y$ and $g_2(x,y) = -x^2 - y^2$. Suppose that (x^*,y^*) is the maximizer of the problem.

(a) We want to find (x, y) satisfies x + 2y = 9 and $x^2 + y^2 = 16$. Since x = 9 - 2y,

$$(9-2y)^2 + y^2 = 16 \Rightarrow 65 - 36y + 5y^2 = 0 \Rightarrow$$
 it has no real solution becase $36^2 - 65 \times 20 < 0$.

(2 points).

(b) We have that $\nabla g_1(x,y) = (1,2)$ and $\nabla g_2(x,y) = (-2x, -2y)$.

From (a), we know that $g_1 \le 9$ and $g_2 \le 16$ can not both binding.

Suppose that $g_1(x^*, y^*) = 9$. Since $\nabla g_1(x, y) = \langle 1, 2 \rangle$, $(\frac{\partial g_1}{\partial x})$, $(\frac{\partial g_1}{\partial y})$, $(\frac{\partial g_1}{\partial x})$ all have rank 1. (1 point). Suppose that $g_2(x^*, y^*) = 16$, then $(x^*)^2 + (y^*)^2 = 16 \Rightarrow x^*$ and y^* can not be both 0. If $x^* > 0$ but $y^* = 0$, then $\left(\frac{\partial g_2}{\partial x} = (2x^*) \text{ has rank } 1.\right)$

If $x^* = 0$ but $y^* > 0$, then $(\frac{\partial g_2}{\partial y} = (2y^*)$ has rank 1. If $x^* > 0$ and $y^* > 0$, then $(\frac{\partial g_1}{\partial x} - \frac{\partial g_1}{\partial y})$ has rank 1. (1 point) Therefore it satisfies Kuhn-Tucker version NDCQ.

- (c) $\tilde{L}(x, y, l_1, l_2) = x^2 + 2y^2 l_1(x + 2y 9) l_2(-x^2 y^2 + 16)$. (2 points).
- (d) At the maximizer (x^*, y^*) , there exist $l_1^* \ge 0, l_2^* \ge 0$ satisfy

$$\begin{cases} \frac{\partial \tilde{L}}{\partial x} &= 2x^* - l_1^* + 2x^* l_2^* \le 0...(1) \\ \frac{\partial L}{\partial y} &= 4y^* - 2l_1^* + 2y^* l_2^* \le 0...(2) \\ x^* \frac{\partial \tilde{L}}{\partial x} &= 0 = x^* \cdot (2x^* - l_1^* + 2x^* l_2^*)...(3) \\ y^* \frac{\partial \tilde{L}}{\partial y} &= 0 = y^* \cdot (4y^* - 2l_1^* + 2y^* l_2^*)...(4) \\ \frac{\partial \tilde{L}}{\partial \lambda_1} &= -(x^* + 2y^* - 9) \ge 0...(5) \\ \frac{\partial \tilde{L}}{\partial \lambda_2} &= (x^*)^2 + (y^*)^2 - 16 \ge 0...(6) \\ l_1^* \frac{\partial \tilde{L}}{\partial \lambda_1} &= 0 = l_1^* \cdot (x^* + 2y^* - 9) = 0...(7) \\ l_2^* \frac{\partial \tilde{L}}{\partial \lambda_2} &= 0 = l_2^* \cdot \left[(x^*)^2 + (y^*)^2 - 16 \right] = 0...(8) \end{cases}$$

If you write down one correct equation, you get 0.5 point. If you write down all correct equations, you get 3 points.

(e) If $(x^*)^2 + (y^*)^2 = 16$, then $x^* + 2y^* \neq 9$.

- $(2) \Rightarrow 2y^*(2+l_2^*) \le 0$. Since $l_2^* \ge 0$ and $y^* \ge 0$, $y^* = 0$. It implies that $x^* = 4$. $(3) \Rightarrow l_2^* = -1$. It is a contradiction. Therefore $(x^*)^2 + (y^*)^2 \ge 16$ can not be binding. If you get one of correct x^*, y^*, l_1^*, l_2^* , you get one point.

(f) If $x^* + 2y^* = 9$, then $(x^*)^2 + (y^*)^2 > 16$.

$$(3), (4) \Rightarrow \begin{cases} x^*(2x^* - l_1^*) = 0 \\ y^*(4y^* - 2l_1^*) = 0 \end{cases}$$

If x + 2y = 9, then (x - 1) = 10. $(8) \Rightarrow l_2^* = 0.(1 \text{ point})$ $(3), (4) \Rightarrow \begin{cases} x^*(2x^* - l_1^*) = 0 \\ y^*(4y^* - 2l_1^*) = 0. \end{cases}$ If $x^* = 0$, then $y^* = \frac{9}{2} \Rightarrow l_1^* = 9$. It implies that $(x^*, y^*, l_1^*, l_2^*) = (0, \frac{9}{2}, 9, 0).(1 \text{ point})$ If $y^* = 0$, then $x^* = 9 \Rightarrow l_1^* = 18$. It implies that $((x^*, y^*, l_1^*, l_2^*) = (9, 0, 18, 0).(1 \text{ point})$ If $x^* > 0, y^* > 0$, then $l_1 = 2x^* = 2y^* \Rightarrow x^* = y^*$. Thus $3x^* = 9 \Rightarrow x^* = 3 \Rightarrow l_1^* = 6$. Thus $((x^*, y^*, l_1^*, l_2^*) = (9, 0, 18, 0).(1 \text{ point})$ (3,3,6,0).(2 points)

(g) $f(0,9/2) = \frac{81}{2}$, f(9,0) = 81, f(3,3) = 27. The maximum value is 81. (2 points)

- 4. (22%) Consider a C^2 utility function $U(x_1, x_2)$ such that $\frac{\partial U}{\partial x_1} > 0$ and $\frac{\partial U}{\partial x_2} > 0$. We want to maximize $U(x_1, x_2)$ under constraints $P_1x_1 + P_2x_2 \le I$, $x_1 \ge 0$, and $x_2 \ge 0$, where $P_1 > 0$, $P_2 > 0$ are unit prices and I > 0 is the budget.
 - (a) (2%) Write down the usual version Lagrangian function.
 - (b) (2%) Show that the usual version NDCQ is satisfied.
 - (c) (3%) List the usual version first order conditions.
 - (d) (3%) From the first order conditions show that at the maximizer the constraint $P_1x_1 + P_2x_2 \le I$ must be binding.
 - (e) (6%) Suppose that the first order conditions has a solution (x_1^*, x_2^*) with $x_1^* > 0$, $x_2^* > 0$. Write down the bordered Hessian matrix at (x_1^*, x_2^*) . List the condition which guarantees that $U(x_1^*, x_2^*)$ is a local maximum value.
 - (f) (6%) Now P_1 , P_2 and I are parameters. Then the maximum value of U depends on P_1 , P_2 , and I, which is denoted by $\tilde{U}(P_1, P_2, I)$. Compute $\frac{\partial \tilde{U}}{\partial P_1}$, $\frac{\partial \tilde{U}}{\partial P_2}$, and $\frac{\partial \tilde{U}}{\partial I}$. Determine the signs of these partial derivatives.

- (a) $L(x_1, x_2, \lambda_1, \lambda_2, \lambda_3) = U(x_1, x_2) \lambda_1(P_1x_1 + P_2x_2 I) + \lambda_2x_1 + \lambda_3x_2$. (缺少 $\lambda_2 x_1 + \lambda_3 x_2$ 扣一分。 $\lambda_2 x_1 + \lambda_3 x_2$ 寫成 $-\lambda_2 x_1 - \lambda_3 x_2$ 扣一分)
- (b) Let $g_1(x_1, x_2) = P_1x_1 + P_2x_2$, $g_2(x_1, x_2) = -x_1$, $g_3(x_1, x_2) = -x_2$. $\overrightarrow{\nabla}g_1 = (P_1, P_2) \neq \overrightarrow{0}, \ \overrightarrow{\nabla}g_2 = (-1, 0) \neq \overrightarrow{0}, \ \overrightarrow{\nabla}g_3 = (0, -1) \neq \overrightarrow{0}. \ (1pt: \ \cancel{β} \, \amalg \ \overrightarrow{\nabla}g_1, \ \overrightarrow{\nabla}g_2, \ \overrightarrow{\nabla}g_3)$ At the maximizer at most two of the constraints are binding and any two of $\{\overrightarrow{\nabla}g_1, \overrightarrow{\nabla}g_2, \overrightarrow{\nabla}g_3\}$ are linearly independent. Hence the NDCQ is satisfied. (1pt)
- (c) First Order conditions : At the maximizer (x_1^*, x_2^*) there are $\lambda_1^*, \lambda_2^*, \lambda_3^*$ s.t.

$$\begin{cases} \frac{\partial L}{\partial x_1} = \frac{\partial U}{\partial x_1} - \lambda_1^* P_1 + \lambda_2^* = 0 \cdots \text{(1)} \\ \frac{\partial L}{\partial x_2} = \frac{\partial U}{\partial x_2} - \lambda_1^* P_2 + \lambda_3^* = 0 \cdots \text{(2)} \\ \lambda_1^* (P_1 x_1^* + P_2 x_2^* - I) = 0 \cdots \text{(3)} \\ \lambda_2^* x_1^* = 0 \cdots \text{(4)} \\ \lambda_3^* x_2^* = 0 \cdots \text{(5)} \\ P_1 x_1^* + P_2 x_2^* \le I \cdots \text{(6)} \\ x_1^* \ge 0, x_2^* \ge 0, \lambda_1^* \ge 0, \lambda_2^* \ge 0, \lambda_3^* \ge 0 \cdots \text{(7)} \end{cases}$$

- 1pt: (1)+(2)1pt: 3+4+5
- (d) If $P_1x_1^* + P_2x_2^* < I$, then $\textcircled{3} \Rightarrow \lambda_1^* = 0$. (1pt) Thus $\textcircled{1} \Rightarrow \frac{\partial U}{\partial x_i}(x_1^*, x_2^*) + \lambda_2^* = 0 \Rightarrow \frac{\partial U}{\partial x_i}(x_1^*, x_2^*) = -\lambda_2^* \le 0$ contradiciton! (2pts) Hence $P_1x_1^* + P_2x_2^* = I$.
- (e) Since only the constraint $P_1x_1+P_2x_2 \leq I$ is binding at (x_1^*, x_2^*) , the bordered Hessian matrix is $H = \begin{pmatrix} 0 & P_1 & P_2 \\ P_1 & L_{x_1x_1} & L_{x_1x_2} \\ P_2 & L_{x_2x_1} & L_{x_2x_2} \end{pmatrix}$ (1pt)

Because $L_{x_1x_1} = U_{x_1x_1}$, $L_{x_1x_2} = U_{x_1x_2}$, $L_{x_2x_2} = U_{x_2x_2}$, the bordered Hessian matrix is $\begin{pmatrix} 0 & P_1 & P_2 \\ P_1 & U_{x_1x_1} & U_{x_1x_2} \\ P_2 & U_{x_2x_1} & U_{x_2x_2} \end{pmatrix}$ (1pt)

There are 2 variables (x_1, x_2) and one binding constraint.

We need to check the last (2-1) leading principal minor which is $\det\begin{pmatrix} 0 & P_1 & P_2 \\ P_1 & U_{x_1x_1} & U_{x_1x_2} \\ P_2 & U_{x_2x_1} & U_{x_2x_2} \end{pmatrix}$. (1pt)

$$\det H = -P_1(P_1U_{x_2x_2} - P_2U_{x_2x_1}) + P_2(P_1U_{x_2x_1} - P_2U_{x_1x_1})$$

$$= -P_1^2U_{x_2x_2} + 2P_1P_2U_{x_1x_2} - P_2^2U_{x_1x_1}\Big|_{(x_1^*, x_2^*)}. (2pts)$$

$$= -P_1 U_{x_2x_2} + 2P_1 P_2 U_{x_1x_2} - P_2 U_{x_1x_1} \Big|_{(x_1^*, x_2^*)}.$$
 (2pts)
$$\text{If } \det \begin{pmatrix} 0 & P_1 & P_2 \\ P_1 & U_{x_1x_1} & U_{x_1x_2} \\ P_2 & U_{x_2x_1} & U_{x_2x_2} \end{pmatrix} \Big|_{(x_1^*, x_2^*)} = -P_1^2 U_{x_2x_2} + 2P_1 P_2 U_{x_1x_2} - P_2^2 U_{x_1x_1} > 0, \text{ then } U(x_1^*, x_2^*) \text{ is a local maximum }$$
 value. (1pt)

(f) By the envelope theorem

$$\begin{array}{lcl} \frac{\partial \tilde{U}}{\partial P_1} & = & \frac{\partial L}{\partial P_1} = -\lambda_1^* x_1^* < 0 \\ \\ \frac{\partial \tilde{U}}{\partial P_2} & = & \frac{\partial L}{\partial P_2} = -\lambda_1^* x_2^* < 0 \\ \\ \frac{\partial \tilde{U}}{\partial I} & = & \lambda_1^* > 0 \end{array}$$

(1pt for $\frac{\partial \tilde{U}}{\partial P_1} = -\lambda_1^* x_1^*$, 1pt for the sign< 0, 1pt for $\frac{\partial \tilde{U}}{\partial P_2} = -\lambda_1^* x_2^*$, 1pt for the sign< 0, 1pt for $\frac{\partial \tilde{U}}{\partial I} = \lambda_1^*$, 1pt for the sign> 0.)

* (f) 的答案. $\frac{\partial \tilde{U}}{\partial P_1}$ 寫成 $-\lambda_1 x_1$ (沒有加*), $\frac{\partial \tilde{U}}{\partial P_2} = -\lambda_1 x_2$ (沒有加*), $\frac{\partial \tilde{U}}{\partial I} = \lambda_1$ (沒有加*) 不扣分

- 5. (18%) Suppose that in the following week you have 12 hours each day to study for the final exams of Calculus 4 and English. Let C be the number of hours per day spent studying for Calculsu 4 and E be the number of hours per day spent studying for English. Let your grade point average from these two courses be $GPA = f(C, E) = \frac{2}{3}(\sqrt{C} + \sqrt{2E})$.
 - (a) (6%) Solve the optimization problem: Maximize f(C, E) under the constraint C + E = 12. Use the bordered Hessian matrix to verify that the solution is indeed a local maximum.
 - (b) (6%) To assure that you obtain certain grades for Calculus 4 and English individually, you impose inequality constraints $C \ge 5$ and $E \ge 4$.
 - Solve the optimization problem: Maximize f(C, E) under constraints $C + E = 12, C \ge 5$, and $E \ge 4$.
 - (c) (6%) By the meaning of multipliers, estimate the maximum value of GPA when the constraints are C + E = 12.5, $C \ge 5.5$ and $E \ge 4.1$.

(a) Define $L(x, y, \mu) = \frac{2}{3} \left(\sqrt{C} + \sqrt{2E} \right) - \mu (C + E - 12)$

$$\begin{cases} \frac{\partial L}{\partial C} = \frac{1}{3} \frac{1}{\sqrt{C}} - \mu = 0 \\ \frac{\partial L}{\partial E} = \frac{\sqrt{2}}{3} \frac{1}{\sqrt{E}} - \mu = 0 \\ \frac{\partial L}{\partial \mu} = C + E - 12 = 0 \end{cases} \Rightarrow \begin{cases} C = \frac{1}{9\mu^2} \\ E = \frac{2}{9\mu^2} \end{cases}$$

and $C + E = 12 \Rightarrow \mu = \frac{1}{6}, C = 4, E = 8.$

and $C + E = 12 \Rightarrow \mu = \frac{1}{6}$, C = 4, E = 8, $\mu = \frac{1}{6}$) The bordered Hessian matrix is $\hat{H} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & \frac{\partial^2}{\partial C^2} L & \frac{\partial^2}{\partial E \partial C} L \\ 1 & \frac{\partial^2}{\partial C \partial E} L & \frac{\partial^2}{\partial E^2} L \end{pmatrix}$ (1pt)

At
$$(C, E) = (4, 8)$$

$$\hat{H} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & -\frac{1}{48} & 0 \\ 1 & 0 & -\frac{1}{96} \end{pmatrix}.$$

 $\det \hat{H} = \frac{1}{96} + \frac{1}{48} > 0$. (1pt) Hence f(C, E) is a local maximum.

(b) Define $L(C, E, \mu, \lambda_1, \lambda_2) = \frac{2}{3} \left(\sqrt{C} + \sqrt{2E} \right) - \mu(C + E - 12) - \lambda_1(-C + 5) - \lambda_2(-E + 4)$ (1pt) constraints are

$$h(C, E) = C + E = 12$$

 $g_1(C, E) = -C \le -5$
 $g_2(C, E) = -E \le -4$

 $\overrightarrow{\nabla} h = (1,1), \ \overrightarrow{\nabla} g_1 = (-1,0), \ \overrightarrow{\nabla} g_2 = (0,-1).$ NDCQ is satisfied.

$$(2pts) \begin{cases} \frac{\partial L}{\partial C} = \frac{1}{3\sqrt{C}} - \mu + \lambda_1 = 0 \cdots \text{(1)} \\ \frac{\partial L}{\partial E} = \frac{\sqrt{2}}{3\sqrt{E}} - \mu + \lambda_2 = 0 \cdots \text{(2)} \\ \lambda_1(-C+5) = 0 \cdots \text{(3)} \\ \lambda_2(-E+4) = 0 \cdots \text{(4)} \\ C+E = 12 \cdots \text{(5)} \\ \lambda_1 \ge 0, \lambda_2 \ge 0, C \ge 5, E \ge 4. \end{cases}$$

We disscuss cases $\{\lambda_1 > 0, \lambda_2 > 0\}$, $\{\lambda_1 = 0, \lambda_2 > 0\}$, $\{\lambda_1 > 0, \lambda_2 = 0\}$, $\{\lambda_1 = \lambda_2 = 0\}$ (以下4個 cases 共3分: 求出正確解, 但是沒有討論全部的 cases 酌扣 1 2分)

1. $\{\lambda_1 > 0, \lambda_2 > 0\}$: (3)(4)(5) contradiction.

2.
$$\{\lambda_1 = 0, \lambda_2 > 0\}$$
 : $\textcircled{4}\textcircled{5} \Rightarrow E = 4, C = 8$
 $\textcircled{1} \Rightarrow \mu = \frac{1}{6\sqrt{2}}$
 $\textcircled{2} \Rightarrow \frac{\sqrt{2}}{6} - \frac{1}{6\sqrt{2}} + \lambda_2 = 0 \Rightarrow \lambda_2 < 0$ contradiction.

3.
$$\{\lambda_1 > 0, \lambda_2 = 0\}$$
: $\textcircled{3}\textcircled{5} \Rightarrow C = 5, E = 7, \textcircled{2} \Rightarrow \mu = \frac{1}{3}\sqrt{\frac{2}{7}}$
 $\textcircled{1} \Rightarrow \lambda_1 = \mu - \frac{1}{3\sqrt{5}} = \frac{1}{3}\sqrt{\frac{2}{7}} - \frac{1}{3\sqrt{5}} > 0.$
Ans: $(C^*, E^*, \mu^*, \lambda_1^*, \lambda_2^*) = \left(5, 7, \frac{1}{3}\sqrt{\frac{2}{7}}, \frac{1}{3}\sqrt{\frac{2}{7}} - \frac{1}{3\sqrt{5}}, 0\right).$

4. $\{\lambda_1=0,\lambda_2=0\}$: ①②⑤ $\Rightarrow C=4,\ E=8$ contradiction to the constraint $C\geq 5.$

Hence the maximum value is $f(5,7) = \frac{2}{3}(\sqrt{5} + \sqrt{14})$.

(c) The maximum value for new constraints can be approximated by

$$f(5,7) + \mu^* \times (12.5 - 12) + (-\lambda_1^*) \times (5.5 - 5) + (-\lambda_2^*) \times (4.1 - 4) \quad (4pts)$$
$$= f(5,7) + 0.5(\mu^* - \lambda_1^*) - 0.1\lambda_2^* = \frac{2}{3}(\sqrt{5} + \sqrt{14}) + \frac{1}{6\sqrt{5}} \quad (2pts)$$

- 6. (12%) Suppose that f(x, y, z) is a C^2 function and P = (1, 2, -3) is a critical point of f which means that $f_x = f_y = f_z = 0$ at P. If at point P, $f_{xx} = 1$, $f_{yy} = 1$, $f_{zz} = -3$, $f_{xy} = -1$, $f_{xz} = 3$, and $f_{yz} = 3$, determine whether f(1, 2, -3) is a local extreme value.
 - (a) (1%) Write down the Hessian matrix of f at P which is denoted by H.
 - (b) (3%) Is H positive definite, negative definite, or indefinite? Is f(1,2,-3) a local maximum, local minimum, or a saddle point?
 - (c) (3%) Now we want to find the extreme value of f under the constraint $x^2 + xy + xz 3z = 9$. Write down the Lagrangian function $\mathcal{L}(x,y,z,\mu)$. Find μ^* such that $\frac{\partial}{\partial x}\mathcal{L} = \frac{\partial}{\partial y}\mathcal{L} = \frac{\partial}{\partial z}\mathcal{L} = 0$ when $(x,y,z,\mu) = (1,2,-3,\mu^*)$.
 - (d) (5%) On the constraint set $x^2 + xy + xz 3z = 9$, is f(1,2,-3) a local maximum, local minimum, or a saddle point?

(a)
$$H = \begin{pmatrix} 1 & -1 & 3 \\ -1 & 1 & 3 \\ 3 & 3 & -3 \end{pmatrix} (1pt)$$

- (b) The leading principal minors of H are $H_1 = 1$, $H_2 = \begin{vmatrix} 1 & -1 \\ -1 & 1 \end{vmatrix} = 0$, $H_3 = \begin{vmatrix} 1 & -1 & 3 \\ -1 & 1 & 3 \\ 3 & 3 & -3 \end{vmatrix} = -36$ (2pts) $\therefore H_1 \cdot H_3 = -36 < 0 \therefore H$ is indefinite. f(P) is a saddle point. (1pt)
- $I_1 I_3 = -50 \setminus 0...II$ is indefinite. f(I) is a saddle point. (
- (c) $\mathcal{L}(x, y, z, \mu) = f(x, y, z) \mu(x^2 + xy + xz 3z 9)$ (1pt) At (1, 2, -3),

$$\begin{split} \frac{\partial L}{\partial x} &= \frac{\partial f}{\partial x}(1,2,-3) - \mu \times 1 = -\mu \\ \frac{\partial L}{\partial y} &= \frac{\partial f}{\partial y}(1,2,-3) - \mu \times 1 = -\mu \\ \frac{\partial L}{\partial z} &= \frac{\partial f}{\partial z}(1,2,-3) - \mu \times (-2) = 2\mu \end{split}$$

when $\mu = 0$, $\frac{\partial L}{\partial x} = \frac{\partial L}{\partial y} = \frac{\partial L}{\partial z} = 0$. Hence $\mu^* = 0$. (2pts)

(d) S: g(x, y, z) = 9 where $g(x, y, z) = x^2 + xy + xz - 3z$, $\overrightarrow{\nabla} g(1, 2, -3) = (1, 1, -2)$. At $(x, y, z, \mu) = (1, 2, -3, 0)$, $L_{xx} = f_{xx} = 1$, $L_{xy} = f_{xy} = -1$, $L_{xz} = f_{xz} = 3$, $L_{yy} = f_{yy} = 1$, $L_{yz} = f_{yz} = 3$, $L_{zz} = f_{zz} = -3$. (1pt) The bordered Hessian is

$$\hat{H} = \begin{pmatrix} 0 & 1 & 1 & -2 \\ 1 & 1 & -1 & 3 \\ 1 & -1 & 1 & 3 \\ -2 & 3 & 3 & -3 \end{pmatrix} (1pt)$$

There are 3 variables and 1 constraint. Hence we need to check the last 3-1 leading principal minors of \hat{H} .

$$\hat{H}_3 = \begin{vmatrix} 0 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{vmatrix} = -4 < 0 \quad (1pt)$$

$$\hat{H}_4 = \begin{vmatrix} 0 & 1 & 1 & -2 \\ 1 & 1 & -1 & 3 \\ 1 & -1 & 1 & 3 \\ -2 & 3 & 3 & -3 \end{vmatrix} = -36 < 0 \quad (1pt)$$

 \hat{H}_3 and \hat{H}_4 both have the same sign as $(-1)^1$. Thus H is positive definite on the constraint set. f(1,2,-3) is a local minimum on S. (1pt)