1081模組03-07班期末考解答和評分標準

1. (6 pts) Find
$$f'(2)$$
 if $f(x) = e^{g(x)}$ and $g(x) = \int_4^{x^2} \frac{t}{1+t^4} dt$.

Solution:

We have $f'(x) = e^{g(x)}g'(x)$ (1 point). From Fundamental Theorem of Calculus (2 point),

$$g'(x) = \frac{d}{dx} \int_4^{x^2} \frac{t}{1+t^4} dt = \frac{x^2}{1+x^8} \cdot 2x = \frac{2x^3}{1+x^8} (1 \text{ point}).$$

We get
$$e^{g(2)} = e^0 = 1$$
 (1 point) and $g'(2) = \frac{2^4}{1+2^8} = \frac{16}{257}$ (1 point). Therefore $f'(2) = \frac{16}{257}$.

2. Compute the following integrals.

(a) (6 pts)
$$\int_0^1 \sin^{-1}(x) dx$$
 (b) (10 pts) $\int \sqrt{1+x^2} dx$ (c) (12 pts) $\int \frac{x^3+4x^2+4x+2}{x^4+2x^3+2x^2} dx$.

Solution:

(a)
$$\int_{0}^{1} \sin^{-1} x dx = x \sin^{-1} x \Big|_{0}^{1} - \int_{0}^{1} x (\sin^{-1} x)' dx \cdots (2pts \text{ for integration by parts})$$

$$= \frac{\pi}{2} - \int_{0}^{1} \frac{x}{\sqrt{1 - x^{2}}} dx \cdots (1pt \text{ for } \sin^{-1} 1 = \frac{\pi}{2} \text{ and } 1pt \text{ for the other})$$

$$= \frac{\pi}{2} + \frac{1}{2} \int_{1}^{0} \frac{du}{\sqrt{u}} \text{ (Let } u = 1 - x^{2} \Rightarrow du = -2x dx) \cdots (1pt \text{ for correct substitution})$$

$$= \frac{\pi}{2} - \sqrt{u} \Big|_{0}^{1} = \frac{\pi}{2} - 1 \cdots (1pt)$$

(b)
$$\int \sqrt{1+x^2} dx = \int \sqrt{\sec^2 \theta} \sec^2 \theta d\theta \text{ (Let } x = \tan \theta \text{ for } -\frac{\pi}{2} < \theta < \frac{\pi}{2} \Rightarrow dx = \sec^2 \theta d\theta \text{)}$$

$$\dots \dots \dots \dots (3\text{pts for trigonometric substitution})$$

$$= \int \sec^3 \theta d\theta \text{ (\because \sec \theta > 0$ for } -\frac{\pi}{2} < \theta < \frac{\pi}{2} \text{)}$$

$$\int \sec^3 \theta d\theta = \int \sec \theta \sec^2 \theta d\theta = \sec \theta \tan \theta - \int \tan \theta (\sec \theta)' d\theta \text{(2pts for integration by parts)}$$

$$= \sec \theta \tan \theta - \int \sec \theta \cdot \tan^2 \theta d\theta = \sec \theta \tan \theta - \int \sec^2 \theta (\sec \theta - 1) d\theta$$

$$= \sec \theta \tan \theta - \int \sec^3 \theta d\theta + \int \sec \theta d\theta = \sec \theta \tan \theta + \ln |\sec \theta + \tan \theta| - \int \sec^3 \theta d\theta.$$

$$\text{Thus, } \int \sec^3 \theta d\theta = \frac{1}{2} \sec \theta \tan \theta + \frac{1}{2} \ln |\sec \theta + \tan \theta| + C$$

$$\text{Hence } \int \sqrt{1+x^2} \, dx = \frac{1}{2} \sec \theta \tan \theta + \frac{1}{2} \ln |\sec \theta + \tan \theta| + C = \frac{1}{2} \sqrt{1+x^2} \cdot x + \frac{1}{2} \ln |\sqrt{1+x^2} + x| + C$$

$$\text{(2 pts) } (\because \tan \theta = x, -\frac{\pi}{2} < \theta < \frac{\pi}{2} \therefore \sec \theta = \sqrt{1+x^2})$$

(c) First, we factorize the denominator:

$$x^4 + 2x^3 + 2x^2 = x^2(x^2 + 2x + 2).(1 \text{ point})$$

We write the integrand as follows

$$\frac{x^3 + 4x^2 + 4x + 2}{x^4 + 2x^3 + 2x^2} = \frac{A}{x} + \frac{B}{x^2} + \frac{Cx + D}{x^2 + 2x + 2}$$
(2 point).

We have

$$x^{3} + 4x^{2} + 4x + 2 = Ax(x^{2} + 2x + 2) + B(x^{2} + 2x + 2) + (Cx + D)x^{2}$$
(1)

Put x = 0 into Equation (1), we get B = 1.

Compare the coefficient of x in Equation (1), we have $2A + 2B = 4 \Rightarrow A = 1$.

Compare the coefficient of x^2 in Equation (1), we have that $2A + B + D = 4 \Rightarrow D = 1$.

Compare the coefficient of x^3 in Equation (1), we have that $A + C = 1 \Rightarrow C = 0$.

Thus
$$\frac{x^3 + 4x^2 + 4x + 2}{x^4 + 2x^3 + 2x^2} = \frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^2 + 2x + 2}$$
 (3 points). Since

$$\int \frac{1}{x} dx = \ln|x| + C(1 \text{ point})$$

$$\int \frac{1}{x^2} dx = -x^{-1} + C(1 \text{ point})$$

$$\int \frac{1}{x^2 + 2x + 2} dx = \int \frac{1}{1 + (x+1)^2} dx = \tan^{-1}(x+1) + C(2 \text{ points}),$$

we have

$$\int \frac{x^3 + 4x^2 + 4x + 2}{x^4 + 2x^3 + 2x^2} dx = \ln|x| - \frac{1}{x} + \tan^{-1}(x+1) + C.$$

$$\int_0^\infty e^{-2x} \cos x \, \mathrm{d}x \ .$$

Solution:

Let $u = e^{-2x}$ and $v = \sin x$, then

$$du = -2e^{-2x} dx$$
 and $dv = \cos x dx$.

Perform integration by parts

$$\int e^{-2x} \cos x \, dx = e^{-2x} \sin x + 2 \int e^{-2x} \sin x \, dx .$$

1 pt : 第一次提到/使用 by parts, 1 pt : 操作正確

Similarly, for the last integral, let $\tilde{u} = e^{-2x}$ and $\tilde{v} = -\cos x$, then

$$d\tilde{u} = -2e^{-2x} dx$$
 and $d\tilde{v} = \sin x dx$.

Again, use integration by parts

$$\int e^{-2x} \sin x \, dx = -e^{-2x} \cos x - 2 \int e^{-2x} \cos x \, dx .$$

 $\fbox{1 pt}$: 第二次提到/使用 by parts, $\fbox{3 pt}$: 函數選取正確, $\fbox{1 pt}$: 計算正確

Putting these together gives

$$\int e^{-2x} \cos x \, dx = e^{-2x} \sin x - 2e^{-2x} \cos x - 4 \int e^{-2x} \cos x \, dx ,$$

$$\Rightarrow \int e^{-2x} \cos x \, dx = \frac{1}{5} e^{-2x} (\sin x - 2 \cos x) + C .$$

Therefore,

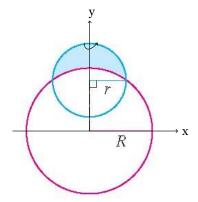
$$\int_0^t e^{-2x} \cos x \, \mathrm{d}x = \frac{1}{5} e^{-2t} (\sin t - 2 \cos t) + \frac{2}{5} \ .$$

1 pt : 得到正確定積分

Note that $|\sin t - 2\cos t| \le 3$ for any t and $e^{-2t} \to 0$ as $t \to \infty$. As $t \to \infty$, the limit of the right hand side exists, and is equal to 2/5. That is to say, the improper integral converges, and is 2/5.

1 pt : 正確論證極限過程, 1 pt : 答案正確

4. (10 pts) Consider the crescent-shaped region (called a lune) bounded by arcs of circles with radii r and R, where 0 < r < R. Rotate the region about the y-axis. Find the resulting volume.



Solution:

$$2\pi \int_0^r \left(\sqrt{r^2 - x^2} + \sqrt{R^2 - r^2} - \sqrt{R^2 - x^2} \right) x \, \mathrm{d}x = \frac{2}{3}\pi \left(r^3 - R^3 + \left(R^2 + \frac{r^2}{2} \right) \sqrt{R^2 - r^2} \right)$$

- 5. (12 pts) Given an increasing supply function S(q) and a decreasing demand function D(q) where S(q) and D(q) are continuous, we define the total surplus at quantity q as $TS(q) = \int_0^q D(t) S(t) dt$ for $q \ge 0$.
 - (a) (4 pts) Show that if $D(q^*) = S(q^*)$ for some $q^* > 0$ then TS(q) obtains the absolute maximum value at $q = q^*$.
 - (b) (8 pts) Suppose that $D(q) = 6 \left(1 + \frac{q}{2}\right)^{2/3}$ and $S(q) = \left(1 + \frac{q}{2}\right)^{1/3}$. Compute TS(q) and find the absolute maximum value of TS(q).

Solution:

(a)
$$TS'(q) = \frac{d}{dq} \int_0^q D(t) - S(t) dt = D(q) - S(q)$$
(2pts)

Because D(q) is decreasing and S(q) is increasing, we know that TS'(q) = D(q) - S(q) is increasing. Hence $D(q^*) = S(q^*)$ implies that $TS'(q^*) = 0$(1pt)

Moreover, TS'(q) > 0 for $0 < q < q^*$ and TS'(q) < 0 for $q > q^*$. Hence TS(q) obtains absolute maximum value at $q = q^*$.

(b)

$$TS(q) = \int_{0}^{q} 6 - \left(1 + \frac{t}{2}\right)^{\frac{2}{3}} - \left(1 + \frac{t}{2}\right)^{\frac{1}{3}} dt$$
(Let $u = 1 + \frac{t}{2} \Rightarrow du = \frac{1}{2}dt, dt = 2du$) = $2\int_{1}^{1+q} 6 - u^{\frac{2}{3}} - u^{\frac{1}{3}} du \cdots (2pts \text{ for correct substitution.})$

$$= 2\left[6u - \frac{5}{3}u^{\frac{3}{5}} - \frac{3}{4}u^{\frac{4}{3}}\right]_{u=1}^{u=1+\frac{q}{2}}$$

$$= 6q - \frac{6}{5}\left(1 + \frac{q}{2}\right)^{\frac{5}{3}} - \frac{3}{2}\left(1 + \frac{q}{2}\right)^{\frac{4}{3}} + \frac{27}{10} \cdots (2pts)$$

From (a), we know that the absolute maximum value of TS(q) occurs at $q = q^*$ if $D(q^*) = S(q^*)$ (1pt)

- 6. (a) (6 pts) Solve the initial-value problem: $\frac{du}{dt} = \frac{2t + \sec^2 t}{2u}$, u(0) = -5.
 - (b) (10 pts) Solve the differential equation $(x^2 + 2)y'(x) + (4x)y = 2x$ with y(0) = 2.

Solution:

(a)

$$2udu = (2t + \sec^2 t)dt \implies \int 2u \ du = \int (2t + \sec^2 t) \ dt \ (1pt)$$

$$\Rightarrow u^2 = t^2 + \tan t + C, \quad C \text{ is constant } (3pts)$$

by initial condition
$$\Rightarrow C = 25 \ (2pts)$$

$$\Rightarrow u^2 = t^2 + \tan t + 25 \Rightarrow u = -\sqrt{t^2 + \tan t + 25}$$

$$\Rightarrow (x^{2}+2)y' + (4x)y = 2x$$

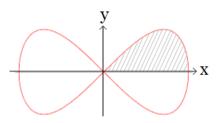
$$\Rightarrow y'(x) + \frac{4x}{x^{2}+2}y = \frac{2x}{x^{2}+2} (2pts)$$

$$\Rightarrow I(x) = e^{\int \frac{4x}{x^{2}+2}} dx = e^{(\ln(x^{2}+2)^{2})} = (x^{2}+2)^{2} (4pts)$$

$$\Rightarrow ((x^{2}+2)^{2}y)' = 2x(x^{2}+2) \Rightarrow (x^{2}+2)^{2}y = \frac{1}{2}x^{4} + 2x^{2} + C, C \text{ is constant } (2pts)$$
by initial condition $\Rightarrow C = 8 \Rightarrow y = \frac{x^{4} + 4x^{2} + 16}{2(x^{2}+2)^{2}} (2pts)$

7. (18 pts) The eight-like curve has the following parametric equation:

$$x = 2\sqrt{2}\sin t$$
, $y = \sin t \cos t$ for $0 \le t \le 2\pi$.



- (a) (4 pts) Find the tangent line at t = 0.
- (b) (8 pts) Find its arc length.
- (c) (6 pts) Find the shaded area which is enclosed by the curve $0 \le t \le \frac{\pi}{2}$ and the x-axis.

Solution:

(a) The slope is given by

$$\left. \frac{y'(t)}{x'(t)} \right|_{t=0} = \left. \frac{\cos^2 t - \sin^2 t}{2\sqrt{2}\cos t} \right|_{t=0} = \frac{1}{2\sqrt{2}} \ .$$

 $\fbox{2~ ext{pts}}$:知道斜率為 y'/x' (若微分計算錯誤,後續均不給分), $\fbox{1~ ext{pt}}$:正確求得該點斜率 (求得 $\pm rac{1}{2\sqrt{2}}$ 不給分)

(b)

$$(x')^{2} + (y')^{2} = (2\sqrt{2}\cos t)^{2} + (\cos^{2}t - \sin^{2}t)^{2}$$
$$= 8\cos^{2}t + (2\cos^{2}t - 1)^{2}$$
$$= 8\cos^{2}t + 4\cos^{4}t - 4\cos^{2}t + 1$$
$$= (2\cos^{2}t + 1)^{2}.$$

 $\fbox{1 pt}$: 知道要計算 $(x')^2$ + $(y')^2$, $\fbox{1 pt}$: 一個微分計算正確, $\fbox{2 pts}$: 整理成完全平方

The arc length is

$$\int_0^{2\pi} \sqrt{(x')^2 + (y')^2} dt = \int_0^{2\pi} (2\cos^2 t + 1) dt$$
$$= \int_0^{2\pi} (\cos(2t) + 2) dt$$
$$= \left(\frac{1}{2}\sin(2t) + 2t\right) \Big|_{t=0}^{2\pi}$$
$$= 4\pi.$$

 $oxed{1\ \mathrm{pt}}$:曲線弧長列式正確(含正確積分範圍 $),\,oxed{2\ \mathrm{pts}}$:不定積分計算正確 $,\,oxed{1\ \mathrm{pt}}$:最後帶值計算正確

(c) <u>解法一</u> As t goes from 0 to $\pi/2$, x(t) is increasing. The area of the shaded region is

$$\int_0^{\frac{\pi}{2}} y(t) dx(t) = \int_0^{\frac{\pi}{2}} (\sin t \cos t) (2\sqrt{2}\cos t dt) .$$

 $\fbox{1 pt}$: 知道要計算 $\int y \mathrm{d}x, \fbox{1 pt}$: 換為 $\mathrm{d}t$ 式子正確(含正確積分範圍)

Let $u = \cos t$, $du = -\sin t dt$. The integral becomes

$$2\sqrt{2}\int_0^1 u^2 du = 2\sqrt{2}\frac{u^3}{3}\bigg|_{u=0}^1 = \frac{2\sqrt{2}}{3}$$
.

 $\boxed{1 \ \mathrm{pt} }$: 變數變換選取正確, $\boxed{1 \ \mathrm{pt} }$: 變數變換範圍判斷正確(若先對不定積分變數變換, 則「不定積分計算正確」 佔2分), $\boxed{1 \ \mathrm{pt} }$: 不定積分計算正確, $\boxed{1 \ \mathrm{pt} }$: 求值正確

<u>解法二</u> As t goes from 0 to $\pi/2$, x goes from 0 to $2\sqrt{2}$. The area of the shaded region is

$$\int_0^{2\sqrt{2}} y \, \mathrm{d}x = \int_0^{2\sqrt{2}} \frac{x}{2\sqrt{2}} \sqrt{1 - \frac{x^2}{8}} \, \mathrm{d}x \; .$$

 $\fbox{1 pt}$: 知道要計算 $\int y \mathrm{d}x$, $\fbox{2 pts}$: 定積分範圍以及 y(x) 表達正確

Let $u = x^2$,

$$\int_0^{2\sqrt{2}} \frac{x}{2\sqrt{2}} \sqrt{1 - \frac{x^2}{8}} \, \mathrm{d}x = \frac{1}{4\sqrt{2}} \int_0^8 \sqrt{1 - \frac{u}{8}} \, \mathrm{d}u = \frac{1}{4\sqrt{2}} \frac{-2 \cdot 8}{3} \left(1 - \frac{u}{8}\right)^{\frac{3}{2}} \bigg|_{u=0}^8 = \frac{2\sqrt{2}}{3} \ .$$

2 pts: 不定積分計算正確, 1 pt: 求値正確