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1. (14 pts) Find the limit, if it exists.

(a) (4 pts) lim
x→0

sin(x2)
1 − cosx

.

(b) (5 pts) lim
x→0

∣ tanx∣
1 −

√
1 + 2x

.

(c) (5 pts) lim
x→∞

(1 + 2

x
)
[x]

.

(Hint: [x] is the greatest integer function, x − 1 < [x] ≤ x and lim
x→∞

(1 + 1

x
)
x

= e.)

Solution:

(a) (Method 1)

lim
x→0

sin(x2)
1 − cosx

(
0
0
)= lim
x→0

2x ⋅ cos(x2)
sinx

(2 pts)

(
0
0
)= lim
x→0

2 cos(x2) − 4x2 ⋅ sin(x2)
cosx

(1 pt)

= 2

1
= 2. (1 pt)

(Method 2)

lim
x→0

sin(x2)
1 − cosx

(
0
0
)= lim
x→0

2x cos(x2)
sinx

(2 pts)

= (lim
x→0

x

sinx
) ⋅ (lim

x→0
2 cos(x2)) (1 pt)

= 1 ⋅ 2 = 2. (1 pt)

(Method 3)

lim
x→0

sin(x2)
1 − cosx

= lim
x→0

sin(x2) ⋅ (1 + cosx)
(1 − cosx)(1 + cosx) = lim

x→0

sin(x2) ⋅ (1 + cosx)
sin2 x

(2 pts)

= lim
x→0

sin(x2)
x2

⋅ x2

sin2 x
⋅ (1 + cosx) (1 pt)

= (lim
x→0

sin(x2)
x2

) ⋅ (lim
x→0

x2

sin2 x
) ⋅ (lim

x→0
1 + cosx) = 1 ⋅ ⋅12 ⋅ 2 = 2. (1 pt)

(Method 4)

lim
x→0

sin(x2)
1 − cosx

= lim
x→0

sin(x2) ⋅ (1 + cosx)
(1 − cosx)(1 + cosx) = lim

x→0

sin(x2) ⋅ (1 + cosx)
sin2 x

(2 pts)

= lim
x→0

sin(x2)
sin2 x

⋅ (1 + cosx) = (lim
x→0

sin(x2)
x2

) ⋅ (lim
x→0

1 + cosx) (1 pt)

(
0
0
)= (lim

x→0

2x cos(x2)
2x

) ⋅ 2 = (lim
x→0

cos(x2)
1

) ⋅ 2 = 1 ⋅ 2 = 2. (1 pt)

P.S. If you use L’Hôspital rule without check the condition
0

0
or

∞
∞ , then you at most get

3 points in this question.
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(b) (Method 1)

We should find both limits lim
x→0+

∣ tanx∣
1 −

√
1 + 2x

and lim
x→0−

∣ tanx∣
1 −

√
1 + 2x

. Since

lim
x→0+

∣ tanx∣
1 −

√
1 + 2x

= lim
x→0+

tanx

1 −
√

1 + 2x

(
0
0
)= lim
x→0+

sec2 x
−1
2 ⋅ (1 + 2x)−1/2 ⋅ 2 (1 pt)

= lim
x→0−

−
√

1 + 2x ⋅ sec2 x = −1, (1 pt)

and

lim
x→0−

∣ tanx∣
1 −

√
1 + 2x

= lim
x→0−

− tanx

1 −
√

1 + 2x

(
0
0
)= lim
x→0−

− sec2 x
−1
2 ⋅ (1 + 2x)−1/2 ⋅ 2 (1 pt)

= lim
x→0−

√
1 + 2x ⋅ sec2 x = 1, (1 pt)

the limit lim
x→0

∣ tanx∣
1 −

√
1 + 2x

does not exist. (1 pt)

(Method 2)

We should find both limits lim
x→0+

∣ tanx∣
1 −

√
1 + 2x

and lim
x→0−

∣ tanx∣
1 −

√
1 + 2x

. Since

lim
x→0+

∣ tanx∣
1 −

√
1 + 2x

= lim
x→0+

(tanx) ⋅ (1 +
√

1 + 2x)
(1 −

√
1 + 2x)(1 +

√
1 + 2x)

= lim
x→0+

(tanx) ⋅ (1 +
√

1 + 2x)
−2x

(1 pt)

= lim
x→0+

sinx

x
⋅ 1 +

√
1 + 2x

−2 cosx
= ( lim

x→0+

sinx

x
) ⋅ ( lim

x→0+

1 +
√

1 + 2x

−2 cosx
) = 1 ⋅ 2

−2
= −1, (1 pt)

and

lim
x→0−

∣ tanx∣
1 −

√
1 + 2x

= lim
x→0−

(− tanx) ⋅ (1 +
√

1 + 2x)
(1 −

√
1 + 2x)(1 +

√
1 + 2x)

= lim
x→0−

(− tanx) ⋅ (1 +
√

1 + 2x)
−2x

(1 pt)

= lim
x→0−

sinx

x
⋅ 1 +

√
1 + 2x

2 cosx
= ( lim

x→0−

sinx

x
) ⋅ ( lim

x→0−

1 +
√

1 + 2x

2 cosx
) = 1 ⋅ 2

2
= 1, (1 pt)

the limit lim
x→0

∣ tanx∣
1 −

√
1 + 2x

does not exist. (1 pt)

(Method 3)

We should find both limits lim
x→0+

∣ tanx∣
1 −

√
1 + 2x

and lim
x→0−

∣ tanx∣
1 −

√
1 + 2x

. Since

lim
x→0+

∣ tanx∣
1 −

√
1 + 2x

= lim
x→0+

(tanx) ⋅ (1 +
√

1 + 2x)
(1 −

√
1 + 2x)(1 +

√
1 + 2x)

= lim
x→0+

(tanx) ⋅ (1 +
√

1 + 2x)
−2x

(1 pt)

= lim
x→0+

sinx

x
⋅ 1 +

√
1 + 2x

−2 cosx

(
0
0
)= ( lim

x→0+

cosx

1
) ⋅ ( lim

x→0−

1 +
√

1 + 2x

−2 cosx
) = 1 ⋅ 2

−2
= −1, (1 pt)

and

lim
x→0−

∣ tanx∣
1 −

√
1 + 2x

= lim
x→0−

(− tanx) ⋅ (1 +
√

1 + 2x)
(1 −

√
1 + 2x)(1 +

√
1 + 2x)

= lim
x→0−

(− tanx) ⋅ (1 +
√

1 + 2x)
−2x

(1 pt)

= lim
x→0−

sinx

x
⋅ 1 +

√
1 + 2x

2 cosx

(
0
0
)= ( lim

x→0−

cosx

1
) ⋅ ( lim

x→0−

1 +
√

1 + 2x

2 cosx
) = 1 ⋅ 2

2
= 1, (1 pt)

the limit lim
x→0

∣ tanx∣
1 −

√
1 + 2x

does not exist. (1 pt)

Page 2 of 18



(c) (Method 1)

Since x − 1 < [x] ≤ x, we have (1 + 2

x
)x−1 < (1 + 2

x
)[x] ≤ (1 + 2

x
)x for x > 0. We need to find

lim
x→∞

(1 + 2

x
)x−1 and lim

x→∞
(1 + 2

x
)x. The following are the computations of both limits:

lim
x→∞

(1 + 2

x
)x = lim

x→∞
[(1 + 2

x
)x2 ]2 = [ lim

x→∞
(1 + 2

x
)x2 ]2 = e2. (2 pts)

And

lim
x→∞

(1 + 2

x
)x−1 = lim

x→∞
(1 + 2

x
)x ⋅ lim

x→∞
(1 + 2

x
)−1 = e2 ⋅ 1 = e2. (2 pts)

Therefore, we get e2 = lim
x→∞

(1 + 2

x
)x−1 ≤ lim

x→∞
(1 + 2

x
)[x] ≤ lim

x→∞
(1 + 2

x
)x = e2. By squeeze

theorem, we have lim
x→∞

(1 + 2

x
)[x] = e2. (1 pt)

(Method 2)

Let y = (1+ 2

x
)[x]. Then ln y = [x] ⋅ ln(1+ 2

x
). Since x−1 < [x] ≤ x, we have (x−1) ⋅ ln(1+ 2

x
) <

[x] ⋅ ln(1 + 2

x
) ≤ x ⋅ ln(1 + 2

x
). We need to compute both limits lim

x→∞
(x − 1) ⋅ ln(1 + 2

x
) and

lim
x→∞

x ⋅ ln(1 + 2

x
).

lim
x→∞

(x − 1) ⋅ ln(1 + 2

x
) = lim

x→∞

ln(1 + 2
x)

(x − 1)−1
(
0
0
)= lim
x→∞

−2x−2

(−1)(x − 1)−2 ⋅ (1 + 2
x)

= lim
x→∞

2(x − 1)2
x2(1 + 2

x)
= lim

x→∞

2(1 − 1
x)2

1 + 2
x

= 2. (2 pts)

On the other hand,

lim
x→∞

x ⋅ ln(1 + 2

x
) = lim

x→∞

ln(1 + 2
x)

x−1
(
0
0
)= lim
x→∞

−2x−2

(−1)x−2 ⋅ (1 + 2
x)

= lim
x→∞

2

(1 + 2
x)

= 2. (2 pts)

Therefore, we get lim
x→∞

(x−1) ⋅ln(1+ 2

x
) ≤ lim

x→∞
[x] ⋅ln(1+ 2

x
) ≤ lim

x→∞
x ⋅ln(1+ 2

x
). By squeeze the-

orem, we have lim
x→∞

ln y = lim
x→∞

[x] ⋅ ln(1+ 2

x
) = 2 which implies that lim

x→∞
y = lim

x→∞
(1+ 2

x
)[x] = e2.

(1 pt)

(Method 3)

Since x − 1 < [x] ≤ x, we have (1 + 2

x
)x−1 < (1 + 2

x
)[x] ≤ (1 + 2

x
)x for x > 0. So we need to

compute lim
x→∞

(1 + 2

x
)x−1 and lim

x→∞
(1 + 2

x
)x. Note that

lim
x→∞

(1 + 2

x
)x−1 = lim

x→∞
e(x−1)⋅ln(1+

2
x
) = e lim

x→∞
(x−1)⋅ln(1+ 2

x
)

and

lim
x→∞

(1 + 2

x
)x = lim

x→∞
ex⋅ln(1+

2
x
) = e lim

x→∞
x⋅ln(1+ 2

x
)

.
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Hence it suffices to find both limits lim
x→∞

(x − 1) ⋅ ln(1 + 2

x
) and lim

x→∞
x ⋅ ln(1 + 2

x
).

lim
x→∞

(x − 1) ⋅ ln(1 + 2

x
) = lim

x→∞

ln(1 + 2
x)

(x − 1)−1
(
0
0
)= lim
x→∞

−2x−2

(−1)(x − 1)−2 ⋅ (1 + 2
x)

= lim
x→∞

2(x − 1)2
x2(1 + 2

x)
= lim

x→∞

2(1 − 1
x)2

1 + 2
x

= 2. (2 pts)

On the other hand,

lim
x→∞

x ⋅ ln(1 + 2

x
) = lim

x→∞

ln(1 + 2
x)

x−1
(
0
0
)= lim
x→∞

−2x−2

(−1)x−2 ⋅ (1 + 2
x)

= lim
x→∞

2

(1 + 2
x)

= 2. (2 pts)

Therefore, we get e2 = lim
x→∞

(1 + 2

x
)x−1 ≤ lim

x→∞
(1 + 2

x
)[x] ≤ lim

x→∞
(1 + 2

x
)x = e2. By squeeze

theorem, we have lim
x→∞

(1 + 2

x
)[x] = e2. (1 pt)
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2. (14 pts)

(a) (4 pts) f(x) = ex2
−x. Find f ′(x) and f ′′(x).

(b) (4 pts) f(x) = sin−1(
√

1 − x2). Find f ′(x).
(c) (6 pts) f(x) = (cosx)log2 x + x2 ⋅ secx. Find f ′(x).

Solution:

(a) f(x) = ex2
−x. The first derivative(2pts) is given by

f ′(x) = dex
2

d(x2 − x) ⋅
d(x2 − x)

dx
= ex2

−x ⋅ (2x − 1) = (2x − 1)ex2
−x.

The second derivative(2pts) is given by

f ′′(x) = d(2x − 1)ex2
−x

dx
= d(2x − 1)

dx
ex

2
−x + (2x − 1)de

x2
−x

dx

= 2ex
2
−x + (2x − 1)2ex2

−x = (4x2 − 4x + 3)ex2
−x.

Partial credits:

� If the calculation of the first derivative is wrong, there will be no point for the second
derivative part. However, the student may still get 1pt for showing some technique
of differentiation.

(b) f(x) = sin−1(
√

1 − x2). The formula for differentiating sin−1(x)(1pt) is

d

dx
sin−1(x) = 1√

1 − x2
.

Therefore, using chain rule, we have the derivative(2pts)

d

dx
sin−1(

√
1 − x2) = d sin−1(

√
1 − x2)

d
√

1 − x2
⋅ d

√
1 − x2

d(1 − x2) ⋅
d(1 − x2)

dx

= 1√
1 − (

√
1 − x2)

⋅ 1

2
√

1 − x2
⋅ (−2x)

= −x√
x2

√
1 − x2

= −x
∣x∣

√
1 − x2

= −sgn(x)√
1 − x2

Note that any answer appeared in the last line of the equation is acceptable.

Partial credits:

� If the student cancels x and ∣x∣, 1pt will be taken off.

(c) f(x) = (cosx)log2 x + x2 ⋅ secx. The derivative of the first half(3pts) is given by

d(cosx)log2 x
dx

= de
ln cosx log2 x

dx
= deln cosx log2 x

d(ln cosx log2 x)
⋅ d(ln cosx log2 x)

dx

= eln cosx log2 x ⋅ (− sinx

cosx
log2 x + ln(cosx) 1

(ln 2)x)

= (cosx)log2 x(− tanx log2 x +
log2(cosx)

x
).
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The derivative of the second half(3pts) is given by

d(x2 secx)
dx

= dx
2

dx
secx + x2d secx

dx
= 2x secx + x2 secx tanx.

Therefore, the complete answer is given by

f ′(x) = (cosx)log2 x(− tanx log2 x +
log2(cosx)

x
) + 2x secx + x2 secx tanx.
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3. (12 pts)

(a) Suppose that a function f has the property:

∣f(x1) − f(x2)∣ ≤ ∣x1 − x2∣2 for any real number x1, x2.

i. (5 pts) Show that f is differentiable everywhere.

ii. (2 pts) Determine f explicitly.

(b) (5 pts) Suppose now that another function g has the property:

g(3x) = 2(g(x) + x) for any real number x, and g is differentiable at x = 0.

Find g(0) and g′(0).

Solution:

(a) i. (2%) Set x1 = x + h, x2 = x ⇒ ∣f(x + h) − f(x)∣ ≤ ∣h∣2 for any x

(1%)⇒ −h ≤ f(x + h) − f(x)
h

≤ h

(1%)⇒ lim
h→0

(−h) ≤ lim
h→0

f(x + h) − f(x)
h

≤ lim
h→0

h

(1%)⇒ f ′(x) = 0 for any x, by squeezing.

ii. (2%) Since f ′(x) = 0 for any x, f(x) = C for all x where C is any constant, as an
application of Mean Value Theorem.

(b) (1%) Set x = 0 ⇒ g(0) = 2(g(0) + 0) ⇒ g(0) = 0
(1%) g is differentiable at x = 0 ⇒ chain rule is applicable
(2%)⇒ 3g′(0) = 2(g′(0) + 1)
(1%)⇒ g′(0) = 2
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4. (12 pts) Let f(x) = tan−1 x + 2x.

(a) (4 pts) Show that f(x) is one to one. Therefore f(x) has inverse function.

(b) (4 pts) Find f−1 (π
4
+ 2) and

d

dx
f−1∣

π
4
+2

.

(c) (4 pts) Write down the linear approximation of f−1(x) at x = π
4
+ 2. Use the linear approxi-

mation to estimate f−1 (π
4
+ 1.95).

Solution:

(a) We compute that f ′(x) = 1

1 + x2 + 2. (1%)

Then we have f ′(x) ≥ 2 for all x ∈ R. (1%)
Method 1.(Use the increasing property to obtain one to one):
Therefore, f is increasing. (1%)
This implies that f(x) is one to one. (1%)
Method 2.(Use Rolle’s theorem):
Assume there are two numbers x1 < x2 such that f(x1) = f(x2). Since f is continuous and
differentiable for all x, (1%)
by applying the Rolle’s theorem, there is number c between x1 and x2 such that f ′(c) = 0.
It contradicts to f ′(x) ≥ 2 for all x ∈ R. Therefore, f(x) is one to one. (1%)
Method 3.(Use Mean Value Theorem):
For any x1 ≠ x2, we want to show f(x1) ≠ f(x2). WLOG, we assume that x2 > x1. Since f
is continuous and differentiable for all x(1%),
by applying the Mean Value Theorem, there is number c between x1 and x2 such that
f(x2) − f(x1) = f ′(c)(x2 − x1). (1%)
Therefore, we have f(x2) − f(x1) ≥ 2(x2 − x1) > 0 and f(x) is one to one. (1%)
Method 4.:

Since (tan−1 x)′ = 1

1 + x2 > 0 and (2x)′ = 2, we have tan−1 x and 2x are strictly increasing.

(2%)
This implies that tan−1 x + 2x is strictly increasing. (1%)
Therefore, the function f(x) is one to one. (1%)

(b) Since f(1) = π
4
+ 2, we have f−1(π

4
+ 2) = 1. (2%)

Then
d

dx
f−1∣

π
4
+2
= 1

f ′(1) = 1
1
2 + 2

= 2

5
. (2%)

(c) The linear approximation of f−1(x) at x = π
4
+ 2 is

L(x) = f−1 (π
4
+ 2) + (f−1)′ (π

4
+ 2)(x − π

4
− 2) = 1 + 2

5
(x − π

4
− 2) . (2%)

Then we estimate

f−1 (π
4
+ 1.95) ≈ L(π

4
+ 1.95) = 1 + 2

5
(−0.05) = 0.98. (2%)
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5. (13 pts) The minute hand on a clock is 6 cm long and the hour hand is 3 cm long. Let θ(t) be the
angle between the minute hand and the hour hand at time t. Let d(t) be the distance between the
tips of the hands at time t.

(a) (2 pts) Find ∣dθ
dt

∣ (rad/hour).

(b) (5 pts) Find d′(t) in terms of θ.

(c) (6 pts) Find the maximum value of d′(t).

Solution:

(a) (1 pt)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

The minute hand rotates clockwise at a rate of one revolution per hour.

The hour hand rotates clockwise at a rate of
1

12
revolution per hour.

(1 pt) Hence ∣dθ
dt

∣ = (1 − 1

12
) × 2π = 11

6
π (rad/hour)

(b) (2 pts: Formula for d2) d2(t) = 32 + 62 − 2 × 3 × 6 × cos θ(t) = 45 − 36 cos(θ(t))
(1 pt: cº®�) 2d ⋅ d′(t) = 36 sin(θ(t)) ⋅ θ′(t)
(2 pts: 6e d �

dθ

dt
, �!)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Because d(t) =
√

45 − 36 cos θ(t), we have d′(t) = 18 sin(θ(t))√
45 − 36 cos θ(t)

⋅ dθ
dt

Hence d′(t) = ±33π
sin(θ(t))√

45 − 36 cos θ(t)
= ±11

sin(θ(t))√
5 − 4 cos θ(t)

π cm/hour

(c) Find θ ∈ [0,2π] such that f(θ) = sin θ√
5 − 4 cos θ

is maximized.

(2 pts: cº®�)

f ′(θ) = cos θ√
5 − 4 cos θ

− sin θ ⋅ 4 sin θ

2(5 − 4 cos θ)3/2 =
1

(5 − 4 cos θ)3/2 (5 cos θ − 4 cos2 θ − 2 sin2 θ)

= 1

(5 − 4 cos θ)3/2 (5 cos θ − 2 cos2 θ − 2)

(1 pt: à��ã)
f ′(θ) = (5 − 4 cos θ)−3/2(2 cos θ − 1)(2 − cos θ)
∵ (5 − 4 cos θ)−3/2 > 0 and (2 − cos θ) > 0
(2 pts: Ô� critical number and endpoints �ýx<)

∴ f ′(θ) = 0 if and only if 2 cos θ − 1 = 0 i.e. cos θ = 1

2
⇔ θ = π

3
or

5

3
π

f(π
3
) =

√

3
2√
3
= 1

2
, f(5

3
π) = −1

2
, f(0) = 0, f(2π) = 0

(1 pt)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Hence the maximum value of f(θ) on [0,2π] is f(π
3
) = 1

2
.

The maximum d′(t) is
11

2
π (cm/hour).
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6. (9 pts) Let f(x) be a continuous function on R. It is given that

lim
h→0

f(h)
h

= 2020.

(a) (4 pts) Compute f(0). Then, prove that f is differentiable at x = 0 and compute f ′(0).
(b) (5 pts) Suppose in addition that f is twice differentiable and that f ′′(x) ≥ 2 for all x > 0.

Using Mean Value Theorem, or otherwise, prove that

f(x) ≥ 2020x + x2 for all x ≥ 0.

Solution:

(a) (Two points)
(Method 1)
By limit laws,

lim
h→0

f(h) = lim
h→0

f(h)
h

⋅ h = lim
h→0

f(h)
h

lim
h→0

h = 2020 ⋅ 0 = 0.

Since f is continuous at 0, we have

f(0) = lim
h→0

f(h) = 0.

(Method 2)

Since f is continuous at 0, lim
h→0

f(h) = f(0) exists. If lim
h→0

f(h) = L ≠ 0, then lim
h→0

f(h)
h

does

not exist, since lim
h→0

∣f(h)
h

∣ =∞. Hence lim
h→0

f(h) = f(0) = 0.

(Two points)

f ′(0) = lim
h→0

f(0 + h) − f(0)
h

f(0)=0
=lim

h→0

f(h)
h

= 2020.

� ”lim
h→0

f(h) ≠ 0” includes the following cases:

(a) lim
h→0

f(h) = L ≠ 0

(b) lim
h→0

f(h) does not exist

If one uses an argument like ”if lim
h→0

f(h) ≠ 0, then lim
h→0

f(h)/h does not exist” without

emphasising the existence of lim
h→0

f(h), we are not sure whether he is aware of case

(b).

� One can get the points of part 2 even he doesn’t get any point of part 1.

(b) (Two points)(estimating f ′)
(Method 1)
Let x > 0. Since f is twice-differentable, f ′ is continuous on [0, x] and differentiable on
(0, x). By applying MVT to f ′, we have

f ′(x) − f ′(0)
x − 0

= f ′′(c) for some c ∈ (0, x)

≥ 2.

Hence
f ′(x) ≥ 2020 + 2x.

(Method 2)
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Racetrack Principle. Suppose both F and G are differentiable functions. If F (0) = G(0)
and F ′(x) ≥ G′(x) for all x > 0, then F (x) ≥ G(x) for all x > 0.

Proof. Let H(x) = F (x) −G(x). For all x > 0, H is continuous on [0, x] and differentiable
on (0, x). By MVT,

H(x) −H(0)
x − 0

H(0)=0
=

H(x)
x

=H ′(c) for some c ∈ (0, x)

= F ′(c) −G′(c) ≥ 0.

Hence H(x) = xH ′(c) ≥ 0, which implies F (x) ≥ G(x) for x > 0.

Let F (x) = f ′(x) and G(x) = 2x + 2020. Then F (0) = f ′(0) = 2020 = G(0) and F ′(x) =
f ′′(x) ≥ 2 = G′(x) for x > 0. Hence by Racetrack Principle we have f ′(x) ≥ 2x + 2020 for
x > 0.

(Three points)(estimating f)
(Method 1)
Let g(x) = f(x) − (2020x + x2). By MVT, for all x > 0,

g(x) − g(0)
x − 0

f(0)=0
=

g(x)
x

= g′(d) for some d ∈ (0, x).

Now
g′(d) = f ′(d) − (2020 + 2d) ≥ 0

from the previous part. Hence

f(x) − (2020x + x2) = g(x) = xg′(d) ≥ 0⇒ f(x) ≥ 2020x + x2

for all x > 0. When x = 0 the inequality is obviously true.

(Method 2)
Let F (x) = f(x) and G(x) = 2020x + x2. Then F (0) = 0 = G(0) and F ′(x) = f ′(x) ≥
2020 + 2x = G′(x) for all x > 0. By Racetrack Principle, we have f(x) ≥ 2020x + x2 for all
x > 0. When x = 0 the inequality is obviously true.

(Method 3)

f(x)f(0)=0=f(x) − f(0) = ∫
x

0
f ′(t)dt ≥ ∫

x

0
(2020 + 2t)dt = 2020x + x2.

� Any argument using integration of f ′′ will not get any point of the first part (estimat-
ing f ′). There exists a differentiable function h such that h′ is not Riemann-integrable
and is bounded below.

� Since the Racetrack Principle is not contained in the textbook, one needs to state
and prove the theorem to get all points. Without stating and proving the theorem, if
no mistake is made in using the theorem, one point is awarded for each part (totally
two points).

� If one uses integration argument not correctly in the second part (using indefinite
integral, using vague word ”by integration”, etc.), one point is awarded.
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7. (13 pts) Suppose that the derivative of the function f is given,

d

dx
f(x) = 3

√
x(9 + x)(9 − x).

(a) (3 pts) Find the critical numbers of f .

(b) (2 pts) Find the intervals on which f is decreasing.

(c) (4 pts) Find the intervals on which f is concave upward.

(d) (4 pts) Sketch the curve y = f(x) assuming f(0) = 0. The sketch just needs to capture
increase/decrease and concavity of the function.

Solution:

(a) The critical numbers are the x-values when f ′(x) = 0 or when f ′(x) is not defined. The
derivative f ′(x) has domain R hence the critical numbers of f are the solutions of f ′(x) = 0.

f ′(x) = 0

3
√
x(9 + x)(9 − x) = 0

x(9 + x)(9 − x) = 0

The critical numbers of f are x = −9,0,9.

(b) We know that the intervals where f ′(x) < 0 are intervals of decrease. First we solve the
inequality f ′(x) < 0.

3
√
x(9 + x)(9 − x) < 0

x(9 + x)(9 − x) < 0

The intervals where f”(x) < 0 are intervals when all three terms are negative or only
(9 − x) < 0, hence (−9,0) and (9,∞) are intervals of decrease for f .

Note: To be careful we should check the endpoints x = −9,0,9 in addition to the intervals
when f ′(x) < 0. The definition of an interval of decrease for f is given by

f(x1) > f(x2) whenever x1 < x2 and x1, x2 are in the interval.

In order to check the endpoints, we need to verify the following 3 statements:

(1) f(−9) > f(x) for all x ∈ (−9,0).
(2) f(0) < f(x) for all x ∈ (−9,0).
(3) f(9) > f(x) for all x ∈ (9,∞).
They can be easily proved using the Mean Value Theorem. The intervals [−9,0] and [9,∞)
are maximal intervals of decrease for f .

(c) We know that the intervals where f ′′(x) > 0 are intervals of upward concavity. The intervals
with upward concavity can be found by taking the derivative of f ′(x) and solving the
inequality f ′′(x) > 0.

f ′′(x) = d

dx
[(81x − x3)(1/3)] = 1

3
(81x − x3)(−2/3)(81 − 3x2) = 27 − x2

3
√

(x(9 + x)(9 − x))2

Solve f ′′(x) = 0 to get x = ±3
√

3. The second derivative is not defined at x = −9,0,9.
Notice that term (81x − x3)(−2/3) is always positive. Therefore

f ′′(x) > 0
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27 − x2 > 0

∣x∣ <
√

27

The interval with upward concavity is (−3
√

3,0) and (0,3
√

3).
Note: To be careful we should check the endpoints x = −3

√
3,0,3

√
3 in addition to the

intervals when f ′′(x) > 0. The definition of concavity requires us to compare the tangent
line and the graph of the function.

The 2 endpoints x = ±3
√

3 correspond to inflections of the graph, hence f is not concave
up at x = ±3

√
3. Even though f ′′(0) is not defined, we see that f is differentiable at x = 0

and f ′(0) = 0. The tangent line of f at x = 0 is a horizontal tangent line. From (b) we can

see that f is decreasing on (−3
√

3,0) and increasing on (0,3
√

3). Therefore the graph of
f is above the tangent line near x = 0, meaning that f has upward concavity at x = 0. The
maximal interval of upward concavity is (−3

√
3,3

√
3).

(d) An example sketch that shows increasing, decreasing, and concavity:

Inflection points
x = ±3

√
3

Local max Local max

Local min

x = −9 x = 9
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Grading scheme: we subtract points for mistakes until it reaches zero.

7(a) (3 pts) 1 point off for each missing or extra critical number. If they display clear errors
in solving for critical numbers, 1 point off for each math error but they get points for the
answer. It needs to be the x-values.

7(b) (2 pts) Depends on the answer in (a). 1 point off if the interval answer doesn’t have the
same endpoints as their answer in (a). 1 point off for each missing or extra interval. If
they display clear errors in solving the inequality, 1 point off for each math error but
they get points for the answer.

For using closed intervals in (b) or (c) will be 1 point off just once. Note: later discussions
resulted in treating closed intervals as correct answers as well but students need to show
more work. For future reference we should not take points off for closed intervals unless
the function is not defined at the endpoint.

7(c) (4 pts) Break this problem into 2 steps:

Step 1: (1 pts) Find and factor the second derivative. (no points off if a calculation
mistake doesn’t change any signs to the second derivative.)

Step 2: (3 pts) Depends on the answer in step 1. 1 point off for each missing or extra
interval. If they display clear errors in solving the inequality (main example: not noticing

(81x − x3)2/3 is always positive), 1 point off for each math error but they get points for
the answer.

Note: later discussions resulted in giving points to some cases of including x = 0 in the
answer even without a detailed explanation.

7(d) (4 pts) Depends on their answers in (b) and (c). 1 point off if the sketch uses points not
in their answers in (b) and (c) (or the sketch did not label the x-values). 1 point off if the
sketch is not differentiable. 0.5 points off if the curve doesn’t go through (0,0).
1 point off for each interval showing the wrong inc/dec and concavity (it is okay if con-
cavity is not accurate as long as they show it clearly in the middle of the interval).

If student read the problem wrong, 1 point off at the start. then use the same grading scheme.
Only exception here is if the student miscopy or read the problem wrong and simplified the
problem (example: f ′(x) = x(9+x)(9−x) or f(x) = x(9+x)(9−x)), in these cases 3 points off
at the start.

Examples so far:

(1) Intervals of concavity including undefined values without checking (see note in solution).
1 point off for each.

(2) Upside down graph: 1 point off if a clear sign mistake is found. Otherwise no points for
the graph.

(3) No work for many parts: for (a) and (b) it is fine to write answers without work. For (c),
no work means no points. (d) depends on (b) and (c) so no points for (d) if they didn’t show
their answers for (b) and (c).

(4) Non-smooth sketch: for students with mistakes in (b) and (c) it is likely their sketch will
be non-smooth. 1 point off for not differentiable.
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(Just in case students read the problem wrong) Solution:

f(x) = (81x − x3)(1/3)

f ′(x) = 1

3
(81x − x3)(−2/3)(81 − 3x2) = 27 − x2

3
√

(81x − x3)2

f ′′(x) = −2x
3
√

(81x − x3)2
− 2(27 − x2)2

3
√

(81x − x3)5

= 2x4 − 162x2 − 2x4 + 108x2 − 1458
3
√

(81x − x3)5
= −54(x2 + 27)

3
√
x5(9 − x)5(9 + x)5

(a) Critical numbers are x = 0,±3
√

3,±9.

(b) The decreasing intervals are (−∞,−9), (−9,−3
√

3), (3
√

3,9), (9,∞). (Or after checking,

(−∞,−3
√

3), (3
√

3,∞).)

(c) The intervals of upward concavity (−9,0), (9,∞)

(d) The sketch has slanted asymptotes y = −x in both directions. Vertical tangent lines at
(−9,0), (0,0), (9,0).

Inflection points x = 0,±9

Local max x = 3
√

3

Local min x = −3
√

3
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8. (13 pts) Three trainers P, Q, R have spotted Snorlax(aÔx) in a rectangular field (See figure
below). Trainer P is standing in the middle of the edge AB whereas Trainers Q and R are at the
two corners of the field opposite to AB. Snorlax is currently at position S which is at a distance of
x meters in front of trainer P.

(a) (3 pts) Let L be the total distances of the three trainers from Snorlax. Prove that

dL

dx
= 1 − 2(4 − x)√

(4 − x)2 + 1
.

(b) (6 pts) Find the values of x at which L attains its greatest and least value respectively.

(c) (4 pts) Snorlax is now asleep. To wake Snorlax up, each trainer is going to play a magical
flute. The intensity of sound energy received by Snorlax from each flute varies inversely with
the square of the distance from the flute. In other words, if E is the total sound energy received
by Snorlax from the three flutes, then

E = k

PS
2 +

k

QS
2 +

k

RS
2 for some constant k > 0.

Trainer P claims that when L attains the least value, E will attain its greatest value. Do you
agree with trainer P? Explain your answer.

Solution:

(a) By the Pythagoras Theorem, we have

QS = RS =
√

(4 − x)2 + 12. (1M)

Therefore, L = PS +QS +RS = x + 2
√

(4 − x)2 + 3 and hence

dL

dx
= 1 + 2 ⋅ 1

2
⋅ 1√

(4 − x)2 + 1
⋅ (2(4 − x)) ⋅ (−1) (1 + 1M)

= 1 − 2(4 − x)√
(4 − x)2 + 1

.

Marking Scheme :
1M for correctly writing down the length of QS (or RS)
1M for the attempt to differentiate L by the chain rule (not necessarily correctly)
1M for differentiating L correctly
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(b) To compute the critical points, we set
dL

dx
= 0 (1 M). Therefore we have

2(4 − x) =
√

(4 − x)2 + 1

⇒ 4(4 − x)2 = (4 − x)2 + 1

⇒ 3(4 − x)2 = 1

⇒ x = 4 − 1√
3

or x = 4 + 1√
3

(rejected, as 0 ≤ x ≤ 4).(1M)

x 0 ⋯ 4 − 1√
3

⋯ 4

dL

dx
− − 0 + +

L 2
√

17 ↘ min ↗ 6

(1M)

Therefore, L attains its minimum value at x = 4 − 1√
3

. (1M)

Since L(0) = 2
√

17 > 2 ⋅ 4 = 8 and L(4) = 6 (1M), we have L(0) > L(4) and hence L attains
its maximum value at x = 0. (1M)

Marking Scheme :

1M for setting
dL

dx
= 0 (or equivalent)

1M for the correct critical number (−0.5M for forgetting to reject x = 4 + 1√
3

)

1M for an attempt to use 1st or 2nd derivative tests (not necessarily correctly)

1M for any correct argument that x attains a minimum at x = 4 − 1√
3

(either by 1st or 2nd derivative tests)
1M for computing L(0) and L(4)
1M for any correct argument that L attains its maximum at x = 0

(c) From the given information, we have

E = k

x2
+ 2k

(4 − x)2 + 1
for some constant k > 0.(1M)

Differentiating with respect to x gives

dE

dx
= k (− 2

x3
+ 4(4 − x)

((4 − x)2 + 1)2) .(1M)

By (b), L attains its minimum value at x = 4 − 1√
3

. However,

dE

dx
∣
x=4−3−

1
2
= k

⎛
⎜⎜
⎝
− 2

(4 − 3−
1
2)

3 +
9

4
√

3

⎞
⎟⎟
⎠
> 0.

Therefore, E is strictly increasing at x = 4 − 1√
3

and does not attain its maximum value

there. (1M) Hence Trainer P’s claim is incorrect. (1M)
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Marking Scheme :
1M for writing down a formula for E or an attempt to differentiate E
1M for the correct formula for dE/dx
1M for any correct argument that E does not attain its maximum value when x =
4 − 1√

3
(either by 1st or 2nd derivative tests)
1M for rejecting the claim of Trainer P (with or without the correct reasoning)
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