
NTU 106-2 MATH1202
Calculus A

Mid-term Exam (Makeup) 11th May, 2018

There are 8 questions in this question set.
The total score of this question set is 100 points.
All questions should be answered. The use of calculator is not allowed.
Justify each step of your arguments as far as possible. Time limit: 2.5 hours

1. Let {an}∞n=0 be a sequence defined by the recurrence relation

a0 = 1 and an+1 := an −
a2n − 2

2an
=
an
2

+
1

an
for every n ∈ N ∪ {0} .

(a) Assuming that {an}∞n=0 is convergent, find its limit. (4 points)
(b) Show that

a2n+1 − 2 =

(
a2n − 2

)2
4a2n

<

(
a2n − 2

)2
4

for all n ∈ N . (3 points)

(c) Argue that {an}∞n=0 is convergent. (5 points)

(You may, after the exam, google “Babylonian method for computing square root” for more
information about this sequence.)

Solution:

(a) It can be seen easily from induction that an > 0 for all n ∈ N. Suppose that limn→∞ an =:
L ≥ 0. (argument for L ≥ 0: 1 point)
Then

L2 = lim
n→∞

an+1an = lim
n→∞

(
a2n
2

+ 1

)
=
L2

2
+ 1 ⇒ L =

√
2 or −

√
2 (rejected) .

Note that the limit of an+1an instead of just an+1 is considered in order to avoid having to
deal with the possibility that L = 0 separately. (3 points)

(b) A direct computation shows that, for any n ∈ N ∪ {0},

a2n+1 − 2 =

(
an
2

+
1

an

)2

− 2 =

(
an
2
− 1

an

)2

=
(an − 2)2

4a2n
. (1 point)

Since the right-hand-side is non-negative for any n ∈ N∪{0}, it follows that a2n ≥ 2 > 1 for
all n ∈ N. (1 point)
The strict inequality in the claim then follows accordingly. (1 point)

(c) It follows that

∣∣a2n+1 − 2
∣∣ < ∣∣a2n − 2

∣∣2
4

<

∣∣a2n−1 − 2
∣∣4

43
< · · · <

∣∣a21 − 2
∣∣2n

42n−1
=

∣∣∣(32)2 − 2
∣∣∣2n

42n−1
=

1

42n+1−1 .

(correct inequalities: 2 points)
The far-most expression on the right-hand-side converges to 0 as n → ∞. By the Squeeze
Theorem,

∣∣a2n − 2
∣∣ converges to 0, which in turn implies that a2n − 2 converges to 0 or a2n

converges to 2, as n → ∞. As x 7→
√
x is a continuous function for x > 0, one has

limn→∞ an =
√
2. In particular, the limit exists. (3 points)
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2. Determine if each of the following series is absolutely convergent, conditionally convergent or
divergent. (5 points each, total: 15 points)

(a)
∞∑
n=1

cosn

(3n− 2)n+
1
2

(b)
∞∑
n=2

(−1)n

ln(n!)
(c)

∞∑
n=1

(−1)n
(
3n

−2 − 1
)

Solution:

(a) Set an := cosn

(3n−2)n+1
2
and note that

|an| =

∣∣∣∣∣ cosn

(3n− 2)n+
1
2

∣∣∣∣∣ ≤ 1

|3n− 2|n+
1
2

=: |bn|

and lim
n→∞

|bn|
1
n = lim

n→∞

1

|3n− 2|1+
1
2n

= 0 < 1 .

It follows that the series
∑∞

n=1 bn is absolutely convergent by the Root Test and, in turn,
the series

∑∞
n=1 an is absolutely convergent by the Comparison Test.

(correct use of tests: 4 points)
(conclusion: 1 point)

(b) Set an := (−1)n
ln(n!) and note that

|an| =
1

ln 1 + ln 2 + · · ·+ lnn︸ ︷︷ ︸
n terms

>
1

n lnn
for n ≥ 2 .

Since ∫ ∞
2

dx

x lnx
= [ln lnx]∞2 =∞ ,

the series
∑∞

n=2
1

n lnn is divergent by the Integral Test and thus the series
∑∞

n=2 an is not
absolutely convergent by the Comparison Test. However, the series is an alternating series.
It can be seen that

|an| =
1

ln(n!)
>

1

ln((n+ 1)!)
= |an+1| and lim

n→∞

1

ln(n!)
= 0.

By the Alternating Series Test,
∑∞

n=2 an is convergent. As a result, the series is conditionally
convergent. (correct use of tests: 3 points)

(conclusion (convergent but not absolutely convergent): 2 points)

(c) Set an := (−1)n
(
3n

−2 − 1
)
= (−1)n

(
e

ln 3
n2 − 1

)
and note that

lim
n→∞

|an|
1
n2

= lim
n→∞

∑∞
k=1

1
k!

(
ln 3
n2

)k
1
n2

= ln 3 <∞ .

As
∑∞

n=1
1
n2 converges as a p-series with p = 2 > 1, it follows from the Limit Comparison

Test that the series
∑∞

n=1 an converges absolutely. (correct use of tests: 4 points)
(conclusion: 1 point)

Cont.
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3. Consider the power series
∞∑
n=1

(−1)n−1np(2x− 1)2n.

(a) Find all the possible radii and intervals of convergence as p varies. (9 points)
(b) Identify the series with an elementary function f when p = −1. (4 points)
(c) Approximate

∫ 0.55
0.5 f(x)dx up to an error less than 10−7. (4 points)

Solution:

(a) Set an := (−1)n−1np(2x− 1)2n. Note that

|an+1|
|an|

=
(n+ 1)p |2x− 1|2(n+1)

np |2x− 1|2n
=

(
1 +

1

n

)p
|2x− 1|2 → |2x− 1|2 as n→∞ .

By the Ratio Test, the series converges absolutely when |2x− 1|2 < 1 ⇐⇒
∣∣x− 1

2

∣∣ < 1
2

and diverges when
∣∣x− 1

2

∣∣ > 1
2 , so the radius of convergence is 1

2 for any real number p.
(correct use of tests: 3 points)

(radius: 1 point)
To determine the interval of convergence, it remains to check convergence at the points such
that 2x−1 = ±1. In both cases, the series becomes

∑∞
n=1(−1)n−1np which is an alternating

(−p)-series. Notice that

np


→∞ when n→∞ and p > 0 ⇒ series diverges by the Test for Divergence;
→ 1 6= 0 when n→∞ and p = 0 ⇒ series diverges by the Test for Divergence;
↘ 0 when n↗∞ and p < 0 ⇒ series converges by the Alternating Series Test.

It follows that the given power series converges at both x = 0 and x = 1 if and only if p < 0.
Therefore, the interval of convergence is [0, 1] when p < 0 and is (0, 1) when p ≥ 0.

(correct use of tests: 3 points)
(correctly distinguishing different cases of p: 1 point)

(intervals: 1 point)
(b) Since we have the power series expansion

ln(1 + x) =

∞∑
n=1

(−1)n−1xn

n
for |x| < 1 ,

it follows that the given power series when p = −1 is ln
(
1 +(2x− 1)2

)
= ln

(
4x2 − 4x+ 2

)
on its interval of convergence [0, 1]. (4 points)

(c) Notice that∫ 0.55

0.5
ln
(
4x2 − 4x+ 2

)
dx =

∫ 0.55

0.5

∞∑
n=1

(−1)n−1(2x− 1)2n

n
dx =

∞∑
n=1

(−1)n−1(0.1)2n+1

2n(2n+ 1)
.

By the Alternating Series Estimate, the given integral can be approximated by

b1 − b2 =
10−3

6
− 10−5

20
= 0.00016616̇

(correct approximation according to the choice of the bound for the error: 2 points)
with an error bounded by

b3 =
10−7

42
< 10−7 ,

which is within the required range. (correct use of estimate: 2 points)

Cont.



NTU 106-2 MATH1202
Calculus A

Mid-term Exam (Makeup) Page 4 of 8

4. Suppose a curve C (a conical helix) is given by the parametric equations

r = aθ and z = bθ ,

where r and θ are the polar coordinates in the (x, y)-plane, and a and b are positive constants
such that a2 + b2 = 1.

(a) Write down a vector function r which represents the curve C. (3 points)

(b) Find the curvature function κ of C. (6 points)

Solution:

(a) r(θ) := 〈aθ cos θ , aθ sin θ , bθ〉 . (3 points)

(b) Note that
r′(θ) = 〈a cos θ − aθ sin θ , a sin θ + aθ cos θ , b〉 ,∣∣r′(θ)∣∣ =√(a cos θ − aθ sin θ)2 +(a sin θ + aθ cos θ)2 + b2

=
√
a2θ2 + a2 + b2 =

√
a2θ2 + 1 ,

r′′(θ) = 〈−2a sin θ − aθ cos θ , 2a cos θ − aθ sin θ , 0〉 .

And thus

r′(θ)× r′′(θ) =

∣∣∣∣∣∣
i j k

a cos θ − aθ sin θ a sin θ + aθ cos θ b
−2a sin θ − aθ cos θ 2a cos θ − aθ sin θ 0

∣∣∣∣∣∣
= 〈abθ sin θ − 2ab cos θ , −abθ cos θ − 2ab sin θ ,

a2( (cos θ − θ sin θ)(2 cos θ − θ sin θ) +(2 sin θ + θ cos θ)(sin θ + θ cos θ))
〉

=
〈
abθ sin θ − 2ab cos θ , −abθ cos θ − 2ab sin θ , 2a2 + a2θ2

〉
,∣∣r′(θ)× r′′(θ)

∣∣ =√(abθ sin θ − 2ab cos θ)2 +(−abθ cos θ − 2ab sin θ)2 +(2a2 + a2θ2)2

= a
√
b2θ2 + 4b2 + 4a2 + 4a2θ2 + a2θ4 = a

√
a2θ4 +(3a2 + 1) θ2 + 4

As a result,

κ(θ) =
|r′(θ)× r′′(θ)|
|r′(θ)|3

=
a
√
a2θ4 +(3a2 + 1) θ2 + 4

(a2θ2 + 1)
3
2

=
a
√
θ2 + 3 + 1

a2θ2+1

a2θ2 + 1
.

(correct use of formulas: 3 points)
(correct calculations: 3 points)

5. Let f(x, y) =


x3

ln(1 + x2 + y2)
if (x, y) 6= (0, 0) ,

0 if (x, y) = (0, 0) .

(a) Show that f is continuous at (0, 0). (3 points)
(Hint: you may use polar coordinates (r, θ) with r ≥ 0 to represent the point (x, y) and
notice that r → 0+ when (x, y)→ (0, 0).)

(b) Find the gradient vector ∇f(0, 0). (3 points)

Cont.
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(c) Determine whether fy is continuous at (0, 0). (3 points)
(d) By computing the directional derivative Duf(0, 0) at (0, 0) in the direction of an arbitrary

unit vector u, determine whether f is differentiable at (0, 0). (4 points)

Solution:

(a) Putting x = r cos θ and y = r sin θ with r > 0, one has

|f(r cos θ, r sin θ)| =
r3
∣∣cos3 θ∣∣

ln(1 + r2)
≤ r r2

ln(1 + r2)
.

Since the right-hand-side converges to 0 · 1
ln e = 0 as r → 0+, it follows from the Squeeze

Theorem that

lim
(x,y)→(0,0)

f(x, y) = lim
r→0+

f(r cos θ, r sin θ) = 0 = f(0, 0) ,

which means that f is continuous at (0, 0). (correct argument: 3 points)
(b) Since f(0, y) = 0 for all y ∈ R, we have fy(0, y) = 0 for all y ∈ R, and fy(0, 0) = 0 in

particular.
A direct computation shows that

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)
h

= lim
h→0

h2

ln(1 + h2)
=

1

ln e
= 1 .

As a result, ∇f(0, 0) = 〈1, 0〉. (calculation + answer: 2+1 points)
(c) For arbitrary (x, y) 6= (0, 0), we have

fy(x, y) =
∂

∂y

(
x3

ln(1 + x2 + y2)

)
= − 2x3y

(1 + x2 + y2)(ln(1 + x2 + y2))2
.

Restricting fy to the line x = y, we have

fy(x, x) = −
2x4

(1 + 2x2)(ln(1 + 2x2))2
→ − 2

4(ln e)2
= −1

2
as x→ 0 .

However, fy(0, 0) = 0 by previous calculation. Therefore, fy is not continuous at (0, 0).
(calculation + conclusion: 2+1 points)

(d) Take an arbitrary unit vector u = 〈cos θ , sin θ〉. By definition,

Duf(0, 0) = lim
h→0

f(h cos θ, h sin θ)− f(0, 0)
h

= lim
h→0

h2
cos3 θ

ln(1 + h2)
= cos3 θ .

Note also that ∇f(0, 0) · u = cos θ by previous calculation. As a result, when cos θ 6= 0
and cos2 θ 6= 1, for example, when θ = π

4 , Duf(0, 0) and ∇f(0, 0) · u do not coincide. This
implies that f is not differentiable at (0, 0). (argument + conclusion: 1+1 points)

(calculation of Duf(0, 0) for a proper choice of u: 2 points)

6. Let f(u, v) be a differentiable function on (0,∞)× (0,∞) and consider the change of coordinates

u = x+ y , v =
y

x+ y

for any (x, y) ∈ (0,∞) × (0,∞). As usual, let i and j be the standard basic unit vectors in the
directions of the positive x- and y-axes respectively. Also write fu := ∂f

∂u and fv := ∂f
∂v .

Cont.
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(a) Treat f as a function on the (x, y)-plane and find its gradient ∇f in terms of i, j, x, y, fu
and fv. (4 points)

(b) Let eu and ev be respectively the unit vectors in the directions where u and v increase at
the fastest rates with respect to the changes of x and y. Show that

∇f =
√
2fueu +

√
x2 + y2

(x+ y)2
fvev . (4 points)

(c) Find the directional derivatives Deuf and Devf . (4 points)
(Caution: eu and ev are not orthogonal.)

Solution:

(a) Note that [
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]
=

[
1 1

− y
(x+y)2

x
(x+y)2

]
.

The Chain Rule yields

∂f

∂x
= fu

∂u

∂x
+ fv

∂v

∂x
= fu − fv

y

(x+ y)2
,

∂f

∂y
= fu

∂u

∂y
+ fv

∂v

∂y
= fu + fv

x

(x+ y)2
.

(3 points)

Therefore,

∇f =
∂f

∂x
i+

∂f

∂y
j =

(
fu − fv

y

(x+ y)2

)
i+

(
fu + fv

x

(x+ y)2

)
j . (1 point)

(b) It follows from the description of eu and ev that

eu =
∇u
|∇u|

=

∂u
∂x i+

∂u
∂y j√(

∂u
∂x

)2
+
(
∂u
∂y

)2 =
1√
2
i+

1√
2
j ,

ev =
∇v
|∇v|

=
−yi+ xj

(x+ y)2

√(
−y

(x+y)2

)2
+
(

x
(x+y)2

)2 = − y√
x2 + y2

i+
x√

x2 + y2
j .

(3 points)

Therefore,

√
2fueu +

√
x2 + y2

(x+ y)2
fvev = fu(i+ j) + fv

(
−y

(x+ y)2
i+

x

(x+ y)2
j

)
= ∇f . (1 point)

(c) It follows from direct calculations that

Deuf = ∇f · eu =
1√
2

(
fu − fv

y

(x+ y)2

)
+

1√
2

(
fu + fv

x

(x+ y)2

)
=
√
2fu +

x− y√
2(x+ y)2

fv ,

(2 points)

Devf = ∇f · ev =
−y√
x2 + y2

(
fu − fv

y

(x+ y)2

)
+

x√
x2 + y2

(
fu + fv

x

(x+ y)2

)
=

x− y√
x2 + y2

fu +

√
x2 + y2

(x+ y)2
fv .

(2 points)

Cont.
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7. Let f(x, y) := −y3 + x2 + y2 − xy.

(a) Find all the local maximum and minimum values of f and locate its saddle points, if any.
(6 points)

(b) Find the extreme values of f on the region bounded by the square with vertices (1, 1),
(1,−1), (−1, 1) and (−1,−1). (6 points)

Solution:

(a) To look for critical points of f in R2, notice that

∇f =
〈
2x− y , −3y2 + 2y − x

〉
= 0 ⇐⇒

 x =
y

2
2y2 − y = 0

⇐⇒ (x, y) = (0, 0) or
(
1

4
,
1

2

)
,

that is, (0, 0) and
(
1
4 ,

1
2

)
are the only critical points of f on the whole plane. (3 points)

Note also that

fxx = 2 > 0 and D(x, y) :=

∣∣∣∣fxx fxy
fyx fyy

∣∣∣∣ = ∣∣∣∣ 2 −1
−1 −6y + 2

∣∣∣∣ = −12y + 3 ,

and thus D(0, 0) = 3 > 0 and D
(
1
4 ,

1
2

)
= −3 < 0. The Second Derivatives Test asserts that(

1
4 ,

1
2

)
is a saddle point of f and f(0, 0) = 0 is a local minimum value around the critical

point (0, 0). (3 points)

(b) Notice that the local minimal point (0, 0) is contained in the given region. To look for
extreme values of f on the boundary of the given square, one searches for the critical points
of f when restricted to the lines x = ±1 and y = ±1 and obtains

fx(x, 1) = 2x− 1 = 0 ⇒ x =
1

2
and f

(
1

2
, 1

)
= −1

4
,

fx(x,−1) = 2x+ 1 = 0 ⇒ x = −1

2
and f

(
−1

2
,−1

)
=

7

4
,

fy(−1, y) = −3y2 + 2y + 1

= −(3y + 1)(y − 1) = 0

⇒ y = −1

3
or 1 and

f
(
−1,−1

3

)
=

22

27

f(−1, 1) = 2 ,

fy(1, y) = −3y2 + 2y − 1 = −3
(
y − 1

3

)2

− 2

3
< 0 ⇒ no critical point

on the line x = 1.

Moreover, one has

f(1, 1) = 0 , f(1,−1) = 4 and f(−1,−1) = 2 .

(computing values at the 7 critical points on the boundary of the square: 4 points)
Therefore, comparing the values of f at the points (0, 0), (1, 1), (1,−1), (−1, 1), (−1,−1),(
1
2 , 1
)
,
(
−1

2 ,−1
)
and

(
−1,−1

3

)
, one can conclude that f attains the absolute minimum value

f
(
1
2 , 1
)
= −1

4 and the absolute maximum value f(1,−1) = 4 on the given region.
(comparing with f(0, 0): 1 point)
(correct extreme values: 1 point)

Cont.
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8. Find the point closest to the origin on the curve of intersection of the plane x + y + z = 1 and
the cone z2 = 2x2 + 2y2. (10 points)

(Suggestion: if you are using Lagrange’s method to solve this problem, you are recommended to
start by showing that the Lagrange multipliers cannot be some special values.)

Solution: Let f(x, y, z) := x2 + y2 + z2. The aim is to minimize f under the constraints
x+ y + z = 1 and z2 = 2x2 + 2y2. Write g(x, y, z) := x+ y + z and h(x, y, z) := 2x2 + 2y2 − z2
for convenience.

By the method of Lagrange multipliers, one obtains


∇f = λ∇g + µ∇h
g(x, y, z) = 1

h(x, y, z) = 0

⇐⇒



2(1− 2µ)x = λ

2(1− 2µ)y = λ

2(1 + µ)z = λ

x+ y + z = 1

2x2 + 2y2 − z2 = 0

.

(correct use of Lagrange’s method: 3 points)

(correct equations: 2 points)

First note that λ = 0 is inconsistent with the system, since, if (1−2µ) 6= 0, the first two equations
would imply (x, y) = (0, 0), which is inconsistent with the last two equations; if (1 − 2µ) = 0,
the third equation would force z to be 0, which is also inconsistent with the last two equations.
Therefore, one must have λ 6= 0.

It follows from the first two equations that (1− 2µ) 6= 0 and thus x = y. Substituting this into
the last two equations yields

x = y

2x+ z = 1

4x2 − z2 = 0

⇐⇒ (x, y, z) =

(
1

4
,
1

4
,
1

2

)
.

(process of solving the system + answer: 3+2 points)

It can be seen easily that the curve of intersection of the given plane and cone (which is indeed
a parabola) contains points arbitrarily far away from the origin, so f does not have a maximum
under the given constraints. Therefore, the point

(
1
4 ,

1
4 ,

1
2

)
obtained above has to be the minimal

point of f , i.e. the point on the given curve of intersection which is the closest to the origin.

The End.


