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1. (15 points) Determine whether the series is absolutely convergent, conditionally convergent, or
divergent. Please state the tests which you use.

(a) (5 points)
∞
∑
n=2

(−1)n
ln(n!)

n3 lnn

(b) (5 points)
∞
∑
n=1

(−1)n (
1

3
√
n
− sin(

1
3
√
n
))

(c) (5 points)
∞
∑
n=1

(−1)
n3

−n
2 (

n + 1

n
)
n2

Solution:

(a)Question
∞
∑
n=2

(−1)n
ln(n!)

n3 lnn

Solution Consider that
ln(n!)

n3 lnn
≤
n lnn

n3 lnn
=

1

n2
.

And series
∞
∑
n=1

1

n2
is convergent by p-series for p = 2 > 1.

Therefore we can apply Limit Comparison Test to determine
∞
∑
n=2

(−1)n
ln(n!)

n3 lnn
is abso-

lutely convergent.

2pts Those who thought
∞
∑
n=1

ln(n!)

n3 lnn
is divergent for any reason and then prove that

∞
∑
n=1

(−1)n
ln(n!)

n3 lnn
is convergent by Alternating Series Test with a correct process get 2 points.

Correct (a)
∞
∑
n=1

1

n2
is going to be convergent by Integral Test.

(b) ln(n!) = ln 1 + ln 2 +⋯ + lnn < lnn + lnn +⋯ + lnn = n lnn

(c) ln(n!) ≤ ln(nn) = n lnn

(d) n lnn − n + 1 = ∫
n

1
lnxdx < ln(n!) < ∫

n+1

1
lnxdx = (n + 1) ln(n + 1) − n

(e) Stirling Formula: n! ∼
√

2πn(
n

e
)
n

Ô⇒ ln(n!) ∼ n lnn − n + ln
√

2πn

Incorrect (a) Ratio Test: lim
n→∞ ∣

an+1
an

∣ = 1 leads no conclusion.

(b) L’Hôspital Rule: Differentiate ln(n!) leads mistakes.

(c) Test for Divergence: The limit of an as n → ∞ is zero. So we can not use it to
conclude the series is divergent.

(d) Limit Comparison with
∞
∑
n=1

1

n3
leads ∞ and no conclusion.

(e)
∞
∑
n=1

1

n2
=
π2

6
≠ 1 = ∫

∞

1

1

x2
dx

(f) lim
n→∞

ln 1

lnn
+

ln 2

lnn
+⋯ +

lnn

lnn
= 0 + 0 +⋯ + 1 is wrong.

(b) Let an =
1

3
√
n
− sin

1
3
√
n

, for any positive integer n. Then, an ≥ 0.

(For x ≥ 0, sin(x) = sin(x) − sin(0) = x ⋅ cos(ξ) ≤ x, for some ξ ∈ (0, x), by Mean Value
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Theorem. Hence,
1

3
√
n
− sin

1
3
√
n
≥ 0.)

This problem can be decomposed into two parts

1. Convergence of
∞
∑
n=1

(−1)nan (2 points)

2. Divergence of
∞
∑
n=1

an (3 points)

Convergence of
∞

∑
n=1

(−1)nan

There are two kinds of grading, depending on what kind of method one used.

1. Directly applying Alternating Series Test:

� (1 point) an is decreasing :

Let f(x) =
1
3
√
x
− sin

1
3
√
x

. f ′(x) =
−1

3
x−4/3(1 − cos(x)) ≤ 0, for x > 0. Hence,

f(x) is decreasing as x increases (when x > 0). Since an = f(n) for all n, an is
decreasing as n increases.

� (1 point) lim
n→∞an = 0 :

lim
n→∞an = lim

n→∞(
1

3
√
n
− sin(

1
3
√
n
)) = lim

n→∞
1

3
√
n
− lim
n→∞ sin(

1
3
√
n
) = 0− 0 = 0, since sin(x)

is continuous with respect to x.

Hence, by Alternating Series Test,
∞
∑
n=1

(−1)nan =
∞
∑
n=1

(−1)n(
1

3
√
n
−sin

1
3
√
n
) is convergent.

2. Considering convergence of
∞
∑
n=1

(−1)n

3
√
n

and
∞
∑
n=1

(−1)nsin(
1

3
√
n
):

� (1 point) Convergence of
∞
∑
n=1

(−1)n

3
√
n

:

1
3
√
n
≥ 0, lim

n→∞
1

3
√
n
= 0 and

1
3
√
n

is decreasing as n increases. Therefore, by Alter-

nating Series Test,
∞
∑
n=1

(−1)n

3
√
n

is convergent.

� (1 point) Convergence of
∞
∑
n=1

(−1)nsin(
1

3
√
n
):

sin(
1

3
√
n
) ≥ 0, lim

n→∞ sin(
1

3
√
n
) = 0 and sin(

1
3
√
n
) is decreasing as n increases. There-

fore, by Alternating Series Test,
∞
∑
n=1

(−1)nsin(
1

3
√
n
) is convergent.

Divergence of
∞

∑
n=1

an

We will use Comparison Test to demonstrate that
∞
∑
n=1

an is divergent. Note that, if one

only use upper bound or negative lower bound of an to get the divergence of
∞
∑
n=1

an, he/she

will get 0 point in this part.

Page 2 of 19



� (2 points) Compare
∞
∑
n=1

an with some appropriate series:

lim
x→∞

x − sin(x)

x3
= lim
x→∞

1 − cos(x)

3x2
= lim
x→∞

sin(x)

6x
=

1

6
⇒ lim

n→∞
an
1/n

= lim
n→∞

1
3√n − sin

1
3√n

(1/ 3
√
n)3

=

1

6
> 0.

Therefore,
∞
∑
n=1

an and
∞
∑
n=1

1

n
both converges or both diverges.

� (1 point) Divergence of the ”appropriate” series:

By p-series test or integral test or comparison test, we know that
∞
∑
n=1

1

n
is divergent,

and hence, so is
∞
∑
n=1

an. That is,
∞
∑
n=1

(
1

3
√
n
− sin

1
3
√
n
) is divergent.

(c) Let an = (−1)
n3

−n
n (

n + 1

n
)n

2

, for all positive integer n.

� (2 points) lim
n→∞

n
√

∣an∣ = lim
n→∞(

n + 1

n
)n = e

� (2 points) e > 1 (strictly larger than 1)

� (1 point) By Root Test,
∞
∑
n=1

an =
∞
∑
n=1

(−1)
n3

−n
n (

n + 1

n
)n

2

is divergent.
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(01-02班) Determine whether the series is absolutely convergent, conditionally convergent, or di-
vergent. Please state the tests which you use.

(a) (5 points)
∞
∑
n=2

(−1)n
ln(n!)

n3 lnn

(b) (5 points)
∞
∑
n=2

(−1)n
n
√

2 − 1

lnn

(c) (5 points)
∞
∑
n=1

n5 4n − n3

(−5)n + 3n

Solution:

(a)

(b) Observe that 21/n − 1 is decreasing to zero, and ln(n) is increasing to infinity. So

21/n − 1

ln(n)

is descreasing to zero. Hence by alternating series test,

∞
∑
n=2

(−1)n
21/n − 1

ln(n)

is convergent. (2 %)

On the other hand, observe that

21/n − 1

ln(n)
=
eln(2)/n − 1

ln(n)
≥

(1 +
ln(2)

n
) − 1

ln(n)
=

ln(2)

n ln(n)
.

Since
∞
∑
n=2

1

n ln(n)
is divergent by integral test, the series

∞
∑
n=2

21/n − 1

ln(n)

is also divergent by comparison test. (3 %)

Thereofore,
∞
∑
n=2

(−1)n
21/n − 1

ln(n)
is conditionally convergent.

(c) Let an = n
5 4n − n3

(−5)n + 3n
. Observe that

lim
n→∞ ∣

an+1
an

∣ = lim
n→∞(

(n + 1)5

n5
×

5n + (−3)n

5n+1 + (−3)n+1
×

4n+1 − (n + 1)3

4n − n3
)

= lim
n→∞(

(n + 1)5

n5
×

1 + (−3/5)n

5 + (−3) × (−3/5)n
×

4 − (n + 1)3/4n

1 − n3/4n
)

= 1 ×
1

5
× 4

=
4

5
. (5 %)

Hence by ratio test,
∞
∑
n=1

an is absolutely convergent.
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2. (10 points) Find the radius of convergence and the interval of convergence of the power series
∞
∑
n=2

(2x − 1)n

n(lnn)
3
4

.

Solution:

Write an =
(2x − 1)n

n(lnn)3/4
, by ratio text, we have

lim
n→∞ ∣

an+1
an

∣ = lim
n→∞

RRRRRRRRRRR

(2x − 1)
n + 1

n
(

ln(n + 1)

lnn
)

3/4RRRRRRRRRRR
= ∣2x − 1∣

Hence, we have ∣2x − 1∣ < 1, or ∣x −
1

2
∣ <

1

2
(4%).

Now we check the convergence of endpoints:

� When x = 0:

Now an =
(−1)n

n(lnn)3/4
. Note that lim

n→∞
1

n(lnn)3/4
= 0(1%) and

1

n(lnn)3/4
is obviously

decreasing.(1%) By Leibnitz test, it is convergent.(1%)

� When x = 1:

Now an =
1

n(lnn)3/4
. Write f(x) =

1

x(lnx)3/4
, then f is obviously positive (for x > 1),

decreasing(1%), and continuous. By integral test, we have

∫

∞

2

dx

x(lnx)3/4
= 4(lnx)1/4∣

∞

2
=∞(1%)

Therefore, it is divergent.(1%)

Hence, the radius of convergence is
1

2
and the convergence interval is [0,1)
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(01-02班)

(a) (5 points) Find the constant p such that lim
n→∞

1√
1
+ 1√

2
+⋯ + 1√

n

np
is a finite nonzero constant.

(b) (5 points) Find the interval of convergence of the power series
∞
∑
n=1

(1 − 3x)n

1√
1
+ 1√

2
+⋯ + 1√

n

.

Solution:

(a) Let L = lim
n→∞

1√
1
+ 1√

2
+⋯ + 1√

n

np
. Observe that

∫

n+1

1

1
√
x

dx ≤
1

√
1
+

1
√

2
+⋯ +

1
√
n
≤ 1 + ∫

n

1

1
√
x

dx. (3 %)

So
2
√
n + 1 − 2

np
≤

1√
1
+ 1√

2
+⋯ + 1√

n

np
≤

2
√
n − 1

np
.

Hence by squeeze theorem,
⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

If p > 1/2, then L = 0,

If p = 1/2, then L = 2,

If p < 1/2, then L =∞.

Thus the constant p = 1/2. (2 %)

(b) Let fn(x) =
1

1√
1
+ 1√

2
+⋯ + 1√

n

(1 − 3x)n. Then

lim
n→∞ ∣

fn+1(x)
fn(x)

∣ =
⎛

⎝
lim
n→∞

1√
1
+ 1√

2
+⋯ + 1√

n

1√
1
+ 1√

2
+⋯ + 1√

n+1

⎞

⎠
∣1 − 3x∣

=
⎛

⎝
lim
n→∞

1√
1
+ 1√

2
+⋯ + 1√

n
√
n

×

√
n + 1

1√
1
+ 1√

2
+⋯ + 1√

n+1
×

√
n

√
n + 1

⎞

⎠
∣1 − 3x∣

= 2 ×
1

2
× 1 × ∣1 − 3x∣

= ∣1 − 3x∣.

So by ratio test, if ∣1−3x∣ < 1, or equiveltnly, 0 < x <
2

3
, then

∞
∑
n=1

fn(x) is convergent (3 %),

and if x < 0, or
2

3
< x, then

∞
∑
n=1

fn(x) is divergent. Now we are going to check x = 0 and

x =
2

3
.

Observe that
∞
∑
n=1

fn(0) =
∞
∑
n=1

1
1√
1
+ 1√

2
+⋯ + 1√

n

. By (a), since

lim
n→∞

RRRRRRRRRRR

1
√
n
/

1
1√
1
+ 1√

2
+⋯ + 1√

n

RRRRRRRRRRR

= 2,

∞
∑
n=1

fn(0) is divergent by limit comparison test. (1 %)
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Observe that
∞
∑
n=1

fn(
2

3
) =

∞
∑
n=1

(−1)n
1

1√
1
+ 1√

2
+⋯ + 1√

n

. So it is clear that
∞
∑
n=1

fn(
2

3
) is conver-

gent by alternating series test. (1 %)

Therefore, the interval of convergence of
∞
∑
n=1

fn(x) is (0,
2

3
].
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3. (10 points) Let F (x) = ∫
x

0
ln(1 +

t2

2
)dt.

(a) (6 points) Find the Maclaurin series of F (x) and its radius of convergence.

(b) (4 points) Estimate F (10−1) up to an error within 10−7.

Solution:

(a)

Let F (x) = ∫

x

0
ln(1 +

t2

2
)dt and by Fundamental Theorem of Calculus we have F ′(x) =

ln(1 +
x2

2
).

Since ln(1+x) =
∞
∑
n=1

(−1)n−1xn

n
, substitute

x2

2
with x and we have ln(1+

x2

2
) =

∞
∑
n=1

(−1)n−1(x
2

2 )n

n
=

∞
∑
n=1

(−1)n−1x2n

2nn

F (x) is integrate F ′(x) term by term F (x) =
∞
∑
n=1

(−1)n−1x2n+1

2nn(2n + 1)

Next, use ratio test to find radius of convergence.

lim
n→∞ ∣

an+1
an

∣ = lim
n→∞ ∣

(−1)nx2n+3

2n+1(n + 1)(2n + 3)
⋅

2nn(2n + 1)

(−1)n−1x2n+1
∣ = ∣

x2

2
∣

In order to make this alternative series converge, ∣
x2

2
∣ need to be less than 1. We have ∣x∣ <

√
2,

hence the radius of convergence is
√

2

(b)

Suppose bn =
( 1
10)

2n+1

2nn(2n + 1)
and Mn =

n

∑
n=1

(−1)n−1( 1
10)

2n+1

2nn(2n + 1)
, we know that the error of Mn(x) is

bounded by bn+1. Note that

b1 =
( 1
10)

−3

2 ⋅ 1 ⋅ 3
=

1

6000
= 0.000167 > 10−7

b2 =
( 1
10)

−5

4 ⋅ 2 ⋅ 5
=

1

4000000
= 2.5 × 10−5 > 10−7

b3 =
( 1
10)

−7

8 ⋅ 3 ⋅ 7
=

1

168 × 107
= 5.952 × 10−10 < 10−7

Hence the summation of first two term of F (10−1) is sufficient to make the error less than 10−7.

F (10−1) ≈
1

6000
−

1

4000000
≈ 0.0001664

GRADING CRITERIA

(a) Finding the Maclaurin series and radius of convergence are 3 points respectively. Write
down the basic formula of Maclaurin series will get 1 point, answer correct will get 2
points.
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For radius of convergence, use ratio test to find the answer will get 1 point, answer correct
will get 2 points.
You will loss 1 point for each calculation error.

(b) If you try to estimate the error F (10−1), you will get 2 points even if the final answer is
wrong. If the answer is correct, you will get another 2 points.
You will loss 1 point for each calculation error.
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4. (8 points)

(a) (4 points) Identify the power series
∞
∑
n=0

(−1)n22n+1

2n + 1
x2n+1 as an elementary function.

(b) (4 points) Find the sum
1

√
3
−

1

9
√

3
+

1

45
√

3
−

1

189
√

3
+ ⋯

Solution:

(a)
Method 1.

∵ tan−1 x =
∞
∑
n=0

(−1)n
x2n+1

2n + 1
(2%)

∴
∞
∑
n=0

(−1)n
(2x)2n+1

2n + 1
= tan−1 2x (2%)

Method 2.

for ∣x∣ <
1

2

∵ (
∞
∑
n=0

(−1)n
(2x)2n+1

2n + 1
)
′

= 2 ⋅
∞
∑
n=0

(−1)n(2x)2n =
2

1 + 4x2
(2%)

∴
∞
∑
n=0

(−1)n
(2x)2n+1

2n + 1
= ∫

2

1 + 4x2
dx = tan−1 2x +C (1%)

The series equals 0 when x = 0, so C = 0. (1%)

Therefore,
∞
∑
n=0

(−1)n
(2x)2n+1

2n + 1
= tan−1 2x

(b)
1

√
3
−

1

9
√

3
+

1

45
√

3
−

1

189
√

3
+ ......

=
1

√
3
−

1

3(
√

3)3
+

1

5(
√

3)5
−

1

7(
√

3)7
+ ......

=
∞
∑
n=0

(−1)n

2n + 1
(

1
√

3
)2n+1 (2%)

= tan−1
1

√
3

(1%)

=
π

6
(1%)
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5. (12 points) Let r(t) = (sin t − t cos t)i + (cos t + t sin t)j + t2k, 0 ≤ t ≤ π, be a vector function that
parametrizes a curve in space.

(a) (3 points) Find the arc length of the curve.

(b) (6 points) At what point on the curve is the osculating plane parallel to the plane x+
√

3y−z = 0
?

(c) (3 points) Find the curvature of the curve.

Solution:

(a) r′(t) = (cos t − cos t + t sin t)i + (− sin t + sin t + t cos t)j + 2tk = t sin ti + t cos tj + 2tk

⇒ ∣r′(t)∣ =
√

t2 sin2 t + t2 cos2 t + (2t)2 =
√

5t (2 points)

∴ Arc length L = ∫

π

0
∣r′(t)∣dt = ∫

π

0

√
5tdt =

√
5

2
π2 (1 point)

(b) Osculating plane is spanned by the tangent and normal vector of the curve r(t), so we need
to find T(t) and N(t).

∵r′(t) = (t sin t, t cos t,2t) and ∣r′(t)∣ =
√

5t⇒ T(t) =
r′(t)
∣r′(t)∣

=
1

√
5
(sin t, cos t,2)

∴T′
(t) =

1
√

5
(cos t,− sin t,0)⇒N(t) = (cos t,− sin t,0)

Normal vector of osculating plane
⇀
n = (1,

√
3,−1) parallel to T ×N =

1
√

5
(2 sin t,2 cos t,−1)

⇒ t =
π

6
, that is, the osculating plane at (

1

2
−

√
3π

12
,

√
3

2
+
π

12
,
π2

36
) is parallel to the plane

x +
√

3y + z = 0. (2 points for each T,T′, 1 point for each N, Point)

(c) (Method I)By (b) we have ∣T′
(t)∣ =

1
√

5
, (1 point)

Curvature κ =
∣T′

(t)∣

∣r′(t)∣
=

1√
5

√
5t

=
1

5t
(2 points)

(Method II) By (a) we have r′(t) = t sin ti + t cos tj + 2tk
⇒ r′′(t) = (sin t + t cos t)i + (cos t − t sin t)j + 2k (1 point)

∴r′(t) × r′′(t) = 2t2 sin ti + 2t2 cos tj − t2k⇒ ∣r′(t) × r′′(t)∣ =
√

5t2 (1 point)

⇒ κ =
∣r′(t) × r′′(t)∣

∣r′(t)∣3
=

√
5t2

(
√

5t)
3 =

1

5t
(1 point)
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(sol II)

(i) r′(t) = t sin ti + t cos tj + 2tk⇒ ∣r′(t)∣ =
√

5t

(ii) r′′(t) = (sin t + t cos t)i + (cos t − t sin t)j + 2k

(iii) r′(t) × r′′(t) = 2t2 sin ti + 2t2 cos tj − t2k⇒ ∣r′(t) × r′′(t)∣ =
√

5t2

(iv) T(t) =
r′(t)
∣r′(t)∣

=
1

√
5
(sin t, cos t,2)

(v) T′
(t) =

1
√

5
(cos t,− sin t,0)⇒ ∣T′

(t)∣ =
1

√
5

(vi) N(t) =
T′

(t)

∣T′
(t)∣

= (cos t,− sin t,0)

(vii) B(t) = T(t) ×N(t) =
1

√
5
(2 sin t,2 cos t,−1)

(a) Arc length L = ∫

π

0
∣r′(t)∣dt = ∫

π

0

√
5tdt =

√
5

2
π2

(b) Normal vector of osculating plane
⇀
n = (1,

√
3,−1) parallel to B(t) =

1
√

5
(2 sin t,2 cos t,−1)

⇒ t =
π

6
, that is, the osculating plane at (

1

2
−

√
3π

12
,

√
3

2
+
π

12
,
π2

36
) is parallel to the plane

x +
√

3y + z = 0.

(c) κ =
∣T′

(t)∣

∣r′(t)∣
=

1√
5

√
5t

=
1

5t
or κ =

∣r′(t) × r′′(t)∣

∣r′(t)∣3
=

√
5t2

(
√

5t)
3 =

1

5t

Page 12 of 19



6. (10 points) Let surface S be given by S = {(x, y, z) ∈ R3∣ sin(xyz) = x + 2y + 3z}.

(a) (4 points) On the surface, compute
∂z

∂x
and

∂y

∂x
.

(b) (2 points) Find an equation of the tangent plane to the surface S at (2,−1,0).

(c) (4 points) Suppose, when restricted to the surface S, a differentiable function f attains a
local maximum value at the point (2,−1,0) with f(2,−1,0) = 10 and fx(2,−1,0) = 2. Let
(x0, y0, z0) be a point which is close to the point (2,−1,0) and lies on another surface sin(xyz) =
z + 2y + 3z + 10−2. Use the linear approximation to estimate f(x0, y0, z0).

Solution:

Define g(x, y, z) = sin(xyz) − x − 2y − 3z.

(a) Treating z implicitly as a function of x and y, by chain rule we can differentiate the
equation g(x, y, z) = 0 as follows:

∂g

∂x
=
∂g

∂x

∂x

∂x
+
∂g

∂y

∂y

∂x
+
∂g

∂z

∂z

∂x
=
∂g

∂x
+
∂g

∂z

∂z

∂x
= 0.

We obtain
∂z

∂x
= −

gx
gz

= −
yz cos(xyz) − 1

xy cos(xyz) − 3
.

Similarly,
∂y

∂x
= −

gx
gy

= −
yz cos(xyz) − 1

xz cos(xyz) − 2
.

(b) The tangent plane to the surface S at (2,−1,0) is

∇g(2,−1,0) ⋅ < x − 2, y − (−1), z − 0 > = −(x − 2) − 2(y + 1) − 5z = 0, or x + 2y + 5z = 0.

(c) Since f(2,−1,0) is a local maximum value, by the method of Lagrange multiplier, there
is a number λ such that ∇f(2,−1,0) = λ∇g(2,−1,0).

From the x-exponent of the equation and the fact that fx(x, y, z) = 2 we find that λ = −2
and thus ∇f(2,−1,0) = −2∇g(2,−1,0). It follows from the linear approximation of g at
the point (2,−1,0) that

10−2 = g(x0, y0, z0) − g(2,−1,0) ≈ ∇g(2,−1,0) ⋅ < x0 − 2, y0 + 1, z0 >

Therefore, the linear approximation of f at (2,−1,0) yields

f(x0, y0, z0) ≈ f(2,−1,0) +∇f(2,−1,0) ⋅ < x0 − 2, y0 + 1, z0 >

= 10 − 2∇g(2,−1,0) ⋅ < x0 − 2, y0 + 1, z0 > ≈ 10 − 2 ⋅ 10−2 = 9.98.

Marking Scheme

(a) 1 point for each derivation using chain rule or direct use of formula;
1 point for each correct answer.

(b) 1 point for the formula of the tangent plane and 1 point for the correct equation.

(c) 1 point for using Lagrange’s method; 0.5 point for the correct λ.
1 point for each approximation of f and g; 0.5 point for the correct estimate.
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7. (13 points) Let f(x, y) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x3 + y3

x2 + y2
if (x, y) ≠ (0,0).

0 if (x, y) = (0,0).

(a) (3 points) Is f(x, y) continuous at (0,0)? Justify your answer.

(b) (2 points) Find the gradient vector ∇f(0,0).

(c) (4 points) Is fx(x, y) continuous at (0,0)? Justify your answer.

(d) (4 points) Find the maximum and minimum directional derivatives of f at the point (0,0)
among the directions of all the unit vectors u.

Solution:

(a) x = r cos θ, y = r sin θ

∣ f(x, y) ∣=∣
r3(cos3 θ + sin3 θ)

r2
∣

= r ∣ cos3 θ + sin3 θ ∣

≤ r ∣ cos3 θ ∣ +r ∣ sin3 θ ∣≤ 2r
So, f(x, y)→ 0 = f(0,0) as r → 0 is as (x, y)→ (0,0)
Therefore, f is continuous at (0,0).

Grading Policy:
(1) 3 points for correct proof.
(2) No partical points.

(b)fx(0,0) = lim
h→0

f(h,0)

h
= lim
h→0

1

h

h3

h2
= 1

fy(0,0) = lim
h→0

f(0, h)

h
= lim
h→0

1

h

h3

h2
= 1

∇f(0,0) = i⃗ + j⃗

Grading Policy:
(1)Correct limits for 1 point.
(2)Correct answer for 1 point.

(c)Away from (0,0),

fx =
3x2(x2 + y2) − (x3 + y3)(2x)

(x2 + y2)2

=
x4 + 3x2y2 − 2xy3

(x2 + y2)2

Let x = r cos θ, y = r sin θ
fx = cos4 θ + 3 cos2 θ sin2 θ − 2 cos θ sin3 θ
fx is Dθ=0.
θ = 0→ f(x, y) = 1, and θ =

π

2
→ f(x, y) = 1

fx(x, y) is NOT continuous at (0,0).

Other method:

fx =
x4 + 3x2y2 − 2xy3

(x2 + y2)2

Let y =mx→ fx =
2m2

1 +m2
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So, the limit as (x, y) → (0,0) along the different lines y = mx is different for different m.
fx(x, y) is NOT continuous.

Grading Policy:
(1)Correct fx for 2 points.
(2)Correct limit at (0,0) for 2 points.

(d) u⃗ = (cos θ, sin θ)

Duf(0,0) = lim
r→0

f(r cos θ, r sin θ)

r

= lim
r→0

r3(cos3 θ+sin3 θ)
r2

r
= cos3 θ + sin3 θ

Let g(θ) = cos3 θ + sin3 θ
→ g′(θ) = −3 sin θ cos2 θ + 3 cos θ sin2 θ

If g′(θ) = 0, then θ = 0 or
π

4
or

π

2
or

5π

4
and so on.

Maximum is g(0) = g(
π

2
) = 1.

Minimum is g(π) = g(
3π

2
) = −1.

Grading Policy:
(1)Find the directional derivative in direction of u⃗ = (cos θ, sin θ) for 2 points.
(2)Correct maximum and minimum argunents for 1 point.
(3)Correct answer for 1 point.
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8. (12 points) Let f(x, y) = 1 + 3x2 − 2x3 + 3y − y3.

(a) (6 points) Find the local maximum and minimum values and saddle point(s) of f(x, y).

(b) (6 points) Find the extreme values of f(x, y) on the region D bounded by the triangle with
vertices (−2,2), (2,2) and (2,−2).

Solution:

(a)
fx = 6x − 6x2 = 6x (1 − x)
fy = 3 − 3y2 = 3 (1 − y) (1 + y)

solve

⎧⎪⎪
⎨
⎪⎪⎩

fx = 0

fy = 0
imply critical points are :(1,1) , (1,−1) , (0,1) , (0,−1)

fxy = fyx = 0
fxx = 6 − 12x
fyy = −6y D = fxxfyy = 72xy − 36y2

at point (1,1)
D (1,1) = 36 > 0, fxx (1,1) = −6 < 0,local maximumf (1,1) = 4
at point (1,−1)
D (1,−1) = −36 < 0,saddle point
at point (0,1)
D (0,1) = −36 < 0,saddle point
at point (0,−1)
D (0,−1) = 36 > 0, fxx (0,−1) = 6 > 0,local minimumf (0,−1) = −1
(b)
for y=2,−2 ≤ x ≤ 2
f (x,2) = −2x3 + 3x2 − 1 denote g1 (x)
g′1 (x) = −6x (x − 1),solve g′1 (x) = 0, x = 0,1
f (−2,2) = 27, f (0,2) = −1, f (1,2) = 0, f (2,2) = −5
for x=2,−2 ≤ y ≤ 2
f (2, y) = −y3 + 3y − 3 denote g2 (y)
g′2 (y) = −3 (y − 1) (y + 1),solve g′2 (y) = 0, y = −1,1
f (2,−2) = −1, f (2,−1) = −5, f (2,1) = −1, f (2,2) = −5
for x+y=0,−2 ≤ x ≤ 2
f (x,−x) = −x3 + 3x2 − 3x + 1 denote g3 (x)
g′3 (x) = −3 (x − 1)

2
,solve g′3 (x) = 0, x = 1

f (−2,2) = 27, f (1,−1) = 0, f (2,−2) = −1

Comparing above point and critical points we get ,

⎧⎪⎪
⎨
⎪⎪⎩

maximum = 27, at (−2,2)

minimum = −5, at (2,−1) , (2,2)

[Grading]
(a)
(2 points)
fx, fy, fxx, fyyand find 4 critical points (4 points)
correct determine each critical point is location maximum,location minimum,saddle point
if you don’t write the local maximum and local minimum values, you will lose 1 point
(b)
if you only consider points in the interior of the triangle and extremum on boundary, you will
get at most 4 points
if you only consider points in the interior of the triangle and corners of the triangle, you will
get at most 3 points
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if you consider all points but doesn’t dissusion, you will get at most 5 points
if you only consider points in the interior of the triangle, you will get at most 1 point
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9. (10 points) By the Extreme Value Theorem, a continuous function on a sphere attains both absolute
maximum and minimum values. Find the extreme values of f(x, y, z) = ln(x+2)+ln(y+2)+ln(z+2)
on the sphere x2 + y2 + z2 = 3.

Solution:

Step1.

Let g(x, y, z) = x2 + y2 + z2 = 3.

According to the method of Lagrange multipliers, we solve the equation ∇f = λ∇g and g(x, y, z) =
3. This gives

1

x + 2
= λ ⋅ 2x

1

y + 2
= λ ⋅ 2y

1

z + 2
= λ ⋅ 2z x2 + y2 + z2 = 3

(3pts)

Step2.

Note that λ ≠ 0 because λ = 0 implies
1

x + 2
= 0, which is impossible.

Thus we have

1

λ
= 2x(x + 2) = 2y(y + 2) = 2z(z + 2)

From 2x(x + 2) = 2y(y + 2), we have

0 = x2 − y2 + 2x − 2y = (x − y)(x + y + 2)

which gives

y = x or y = −x − 2

Similarly, from 2x(x + 2) = 2z(z + 2), we have

z = x or z = −x − 2

Case1. y = x and z = x
From x2 + y2 + z2 = 3, we have 3x2 = 3 and then x = 1,−1.
Thus we have two points (1,1,1), (−1,−1,−1).

Case2. y = x and z = −x − 2

From x2 + y2 + z2 = 3, we have 3x2 + 4x + 4 = 3 and then x = −
1

3
,−1.

Thus we have two points (−
1

3
,−

1

3
,−

5

3
), (−1,−1,−1).

Case3. y = −x − 2 and z = x

From x2 + y2 + z2 = 3, we have 3x2 + 4x + 4 = 3 and then x = −
1

3
,−1.

Thus we have two points (−
1

3
,−

5

3
,−

1

3
), (−1,−1,−1).
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Case4. y = −x − 2 and z = −x − 2

From x2 + y2 + z2 = 3, we have 3x2 + 8x + 8 = 3 and then x = −
5

3
,−1.

Thus we have two points (−
5

3
,−

1

3
,−

1

3
), (−1,−1,−1).

Hence f has possible extreme values at the points (1,1,1), (−1,−1,−1), (−
1

3
,−

1

3
,−

5

3
), (−

1

3
,−

5

3
,−

1

3
)

and (−
5

3
,−

1

3
,−

1

3
). (5pts)

Step3.

We compare the values of f(x, y, z) at these points:

� f(1,1,1) = ln 27

� f(−1,−1,−1) = 0

� f(−
1

3
,−

1

3
,−

5

3
) = f(−

1

3
,−

5

3
,−

1

3
) = f(−

5

3
,−

1

3
,−

1

3
) = ln

25

27

Therefore the maximum value of f on the sphere x2 + y2 + z2 = 3 is ln 27

and the minimum value is ln
25

27
. (2pts)
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