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1. (20 points) Evaluate the integrals.

(a) (10 points) ∫
1

0
∫

2
√
y

√
y

ex
3

dxdy + ∫
4

1
∫

2

√
y
ex

3

dxdy.

(b) (10 points) ∬
R

cos(
y − 2x

y + x
) dA, where R is the trapezoidal region with vertices (1,0),(2,0),(0,2)

and (0,1).

Solution:

(a) Let D1,D2 be the region such that

∫ ∫
D1

ex
3

dA = ∫

1

0
∫

2
√
y

√
y

ex
3

dxdy

,

∫ ∫
D2

ex
3

dA = ∫

4

1
∫

2ex
3

√
y

dxdy

. Therefore, ∫
4

1
∫

2ex
3

√
y

dxdy + ∫
1

0
∫

2
√
y

√
y

ex
3

dxdy = ∫ ∫
D1∪D2

ex
3

dA = ∫

2

0
∫

x2

x2

4

ex
3

dydx =

∫

2

0

3

4
x2ex

3

dx =
1

4
(e8 − 1).

standard of evalutaion

Simple calculation error 8pt
Right integration range after changing the order of x and y 5pt
Right integration range after changing the order of x and y but wrong calculation 4pt

(b) Let u = x + y, v = y − 2x, then we have x =
1

3
(u − v), y =

1

3
(v + 2u). (1 point)

∂(x, y)

∂(u, v)
=

RRRRRRRRRRRRRRR

1

3

−1

3
2

3

1

3

RRRRRRRRRRRRRRR

=
1

3
(2 points)

Boundary: v = u, v = −2u, u = 1 and u = 2. (2 points)

∬
R

cos(
y − 2x

x + y
)dA =∬

D
cos(

v

u
) ∣
∂(x, y)

∂(u, v)
∣ dA (2 points)

=∬
D

cos(
v

u
)
1

3
dA

=
1

3 ∫
2

1
∫

u

−2u
cos(

v

u
)dvdu

=
1

3 ∫
2

1
(u sin(

v

u
) ∣v=uv=−2u)du

=
1

3 ∫
2

1
u(sin 1 + sin 2)du

=
1

2
(sin 1 + sin 2) (3 points)
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2. (16 points) Evaluate the integrals.

(a) (8 points) ∫
2

0
∫

1

0
∫

1

y
e−z

2

dz dy dx.

(b) (8 points) ∭
E
x2dV , where E is the solid that lies in the first octant within the cylinder x2+y2 =

1 and below the cone z2 = 4x2 + 4y2.

Solution:

(a) ∫
2

0
∫

1

0
∫

1

y
e−z

2

dzdydx

= ∫

2

0
∫

1

0
∫

0

z
e−z

2

dydzdx (3 pt)

= ∫

2

0
∫

1

0
ze−z

2

dzdx, let u = −z2du = −2zdz (3pt)

= ∫

2

0
∫

−1

0
eududx

= ∫

2

0
−

1

2
e−1 +

1

2
dx (2pt)

= 1 − e−1

(b) (Method 1) Use cylindrical coordinates

∭
E
x2 dV =

4pts
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

∫

π/2

0
∫

1

0
∫

2r

0
(r cos θ)2r dz dr dθ =

1pt
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

∫

π/2

0
∫

1

0
2r4 cos2 θ dr dθ =

3pts
ª
π

10

or

∭
E
x2 dV = ∫

π/2

0
∫

2

0
∫

1

z/2
(r cos θ)2r dr dz dθ = ⋯ =

π

10

(Method 2) Use spherical coordinates

∭
E
x2 dV =

4pts
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

∫

π/2

0
∫

π/2

tan−1 1
2

∫

1
sinφ

0
(r sinφ cos θ)2r2 sinφdr dφdθ =

1pt
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
1

5 ∫
π/2

0
∫

π/2

tan−1 1
2

cos2 θ

sin2 φ
dφdθ

=
1

5 ∫
π/2

0
cos2 θ dθ∫

π/2

tan−1 1
2

csc2 φdφ =
1

5
⋅
π

4
⋅ 2 =

π

10
(3pts),

where ∫ csc2 φdφ = − cotφ +C

(Method 3) By symmetry and use cylindrical coordinates

∭
E
x2 dV =

1

2∭E
x2 + y2 dV =

1

2 ∫
π/2

0
∫

1

0
∫

2r

0
r2 ⋅ r dz dr dθ =

π

10

Remark 8�/¤�f�

θÄë�∫
2π

0
�∫

π/4

0
�úTH

2π

5
�
π + 2

20
�6��E���Ôgè�0

π

40
�5��

zÄë�∫
4r2

0
�0

π

6
��ëJacobian r�4��zÄë�∫

2

0
�0

π

8
�3��
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3. (10 points) Let E be the tetrahedron bounded by the planes x + y + z = 3, x = 2z, y = 0, and z = 0
which is completely occupied by a solid with the density function ρ(x, y, z) = y. Find the total mass
of the solid.

x
y

z

3
3

E

Solution:

The total mass of the solid is given by M ∶=∭
E
y dV . (3 points)

The region E can be described as

E = {(x, y, z) ∈ R3 ∣ (z, x) ∈D , 0 ≤ y ≤ 3 − z − x} ,

where D is the triangular region in the (z, x)-plane given by

D ∶= {(z, x) ∈ R2 ∣ 0 ≤ z ≤ 1 , 2z ≤ x ≤ 3 − z} .

(correct description of the region (reflected in the regions of integration): 4 points)

[Method 1] By a direct computation, the total mass is found to be

M =∭
E
y dV = ∫

1

0
∫

3−z

2z
∫

3−z−x

0
y dy dx dz

= ∫

1

0
∫

3−z

2z
[
y2

2
]

y=3−z−x

y=0

dx dz =
1

2 ∫
1

0
∫

3−z

2z
(3 − z − x)

2
dx dz

=
1

2 ∫
1

0
[−

(3 − z − x)
3

3
]

x=3−z

x=2z

dz =
1

6 ∫
1

0
(3 − 3z)

3
dz

=
33

6
[−

(1 − z)
4

4
]

1

0

=
33

24
=

9

8
.

[Method 2] Consider the change of variables

u = 3z , v = x + z , w = x + y + z ,

which transforms E into a region in the uvw-space given by

E ≅ {(u, v,w) ∈ R3 ∣ 0 ≤ u ≤ v ≤ w ≤ 3}

= {(u, v,w) ∈ R3 ∣ 0 ≤ w ≤ 3 , 0 ≤ v ≤ w , 0 ≤ u ≤ v} .

The required Jacobian can be calculated from

∂(u, v,w)

∂(x, y, z)
=

RRRRRRRRRRRRRR

0 0 3
1 0 1
1 1 1

RRRRRRRRRRRRRR

= 3 ⇒
∂(x, y, z)

∂(u, v,w)
=

1

3
.
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Therefore, the total mass is found to be

M =∭
E
y dV = ∫

3

0
∫

w

0
∫

v

0
(w − v)

1

3
du dv dw

=
1

3 ∫
3

0
∫

w

0
(wv − v2) dv dw

=
1

3 ∫
3

0
(
w3

2
−
w3

3
) dw =

1

3 ⋅ 6 ∫
3

0
w3 dw

=
34

3 ⋅ 6 ⋅ 4
=

9

8
.

(calculation + answer: 3 points)
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4. (12 points) Evaluate the line integral ∫
C

sinπx dx + (ey
2

+ x2)dy along the following choices of the

curve C.

x

y

(a) (4 points) C = C0 is the line segment from (−1,0) to (0,0).

(b) (8 points) C = C1 ∪ C2, where C1 is the polar curve r = 2 sin θ, 0 ≤ θ ≤
π

2
and C2 is the cardioid

r = 1 + sin θ,
π

2
≤ θ ≤ π.

Solution:

(a) Describe C0 as r(t) = (t − 1,0), 0 ≤ t ≤ 1 (ëúC0�Ãx��1�). Then

∫
C0

sin(πx) dx + (ey
2

+ x2) dy

=∫

1

0
sin(π(t − 1)) ⋅ 1 + (1 + (t − 1)2) ⋅ 0 dt ((Ãx�ãÛÚM���1�)

=∫

1

0
sin(π(t − 1)) dt =

−1

π
cos(π(t − 1))∣

1

0
=
−2

π
(�úcºTH��2�).

(b) If D is the region bounded by C0, C1, and C2, then by Green’s theorem, we have

∫
C0∪C1∪C2

sin(πx) dx + (ey
2

+ x2) dy =∬
D

2x dA (�( Green’s theorem��3�)

=∫

π/2

0
∫

2 sin θ

0
2 ⋅ r cos θ ⋅ r drdθ + ∫

π

π/2
∫

1+sin θ

0
2 ⋅ r cos θ ⋅ r drdθ

((Ãx�ãÛbM���3����h�cº�q��Lf�)

=
4

3
(sin θ)4∣

π/2

0
+

1

6
(1 + sin θ)4∣

π

π/2
=

4

3
+
−5

2
=
−7

6
(���úbM���2�).

Therefore,

∫
C1∪C2

sin(πx) dx + (ey
2

+ x2) dy =
−7

6
+

2

π
.
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5. (16 points) Let F (x, y) = P (x, y) i +Q(x, y) j, where P (x, y) = xy√
x2 + y2

, Q(x, y) = x2 + 2y2√
x2 + y2

.

(a) (3 points) Compute
∂P

∂y
and

∂Q

∂x
. Is F conservative on the right half plane D = {(x, y)∣x > 0}? Justify

your answer.

(b) (4 points) Compute ∫
C
F ⋅ dr, where C is any curve in the right half plane D from (1,1) to (2,2).

(c) (4 points) Compute ∮
C
F ⋅dr, where C is a positively oriented circle centered at (0,0) with radius r > 0.

(d) (4 points) Compute ∮
C
F ⋅ dr, where C is any positively oriented simple closed curve, C ⊂ R2/{(0,0)}.

(Hint: You need to discuss whether C encloses (0,0) or not.)
(e) (1 point) Is F conservative on R2/{(0,0)}? Justify your answer.

Solution:

(a)

∂P

∂y
=

x
√
x2 + y2 − 1

2xy
2y

√

x2+y2

x2 + y2
=

x
√
x2 + y2 − xy2

√

x2+y2

x2 + y2
=
x3 + xy2 − xy2

(x2 + y2)
3
2

=
x3

(x2 + y2)
3
2

(1%)

∂Q

∂x
=

2x
√
x2 + y2 − (x2 + 2y2)1

2
2x

√

x2+y2

x2 + y2
=

2x3 + 2xy2 − x3 − 2xy2

(x2 + y2)
3
2

=
x3

(x2 + y2)
3
2

(1%)

Since
∂P

∂y
=
∂Q

∂x
on D = {(x, y)∣x > 0} and D is simply-connected, by Green’s theorem F⃗ is

conservative on D. (1%)
(b)
Let r⃗(t) = ⟨t, t⟩, 1 ≤ t ≤ 2. (1%)

∫

(2,2)

(1,1)
F⃗ ⋅ dr⃗ = ∫

2

1
⟨
t2

√
2t
,

3t2
√

2t
⟩ ⋅ ⟨1,1⟩dt (2%)

=
√

2t2∣21 = 3
√

2 (1%)

(c)
r⃗(t) = ⟨r cos t, r sin t⟩, 0 ≤ t ≤ 2π (1%)

∮
C
F⃗ ⋅ dr⃗ = ∫

2π

0
⟨
r2 cos t sin t

r
,
r2(1 + sin2 t)

r
⟩ ⋅ ⟨−r sin t, r cos t⟩dt (2%)

= ∫

2π

0
(−r2 cos t sin2 t + r2(1 + sin2 t) cos t)dt = ∫

2π

0
r2 cos tdt = 0 (1%)

(d)
Case 1 (2%): For any simple closed curve C in R2/{(0,0)} that enclosed (0,0). Let D be the

region bounded between C and Cr, and F⃗ is defined on D and
∂P

∂y
,
∂Q

∂x
are continuous on D. By

Green’s theorem,

∬
D
(
∂Q

∂x
−
∂P

∂y
)dA = 0 = ∮

C
F⃗ ⋅ dr⃗ − ∮

Cr
F⃗ ⋅ dr⃗

for some r small enough such that Cr is inside C. Therefore,

∮
C
F⃗ ⋅ dr⃗ = ∮

Cr
F⃗ ⋅ dr⃗ = 0 by (c)
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where Cr is a circle with x2 + y2 = r2.
Case 2 (2%): For any simple closed curve C in R2/{(0,0)} that does not enclosed (0,0). Let D
be the region bounded by C. By Green’s theorem,

∬
D
(
∂Q

∂x
−
∂P

∂y
)dA =∬

D
0dA = ∮

C
F⃗ ⋅ dr⃗ = 0

(e) (1%)

Yes, since ∮
C
F⃗ ⋅ dr⃗ = 0 for any simple close curve C in R2/{(0,0)}, we get F⃗ is conservative in

R2/{(0,0)}, which is connected.
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6. (10 points) Find the area of the part of the surface x2 + y2 + z2 = 1 that lies within the cylinder
x2 + y2 + x = 0 and above z = 0.

Solution:

Solution I. The equation of the cylinder is (x +
1

2
)
2

+y2 =
1

4
. Set D = {(x, y) ∶ (x +

1

2
)
2

+ y2 =
1

4
}.

Area =∬
D

√
1 + z2x + z

2
y dA

We compute zx = −
x

√
1 − x2 − y2

and zy = −
y

√
1 − x2 − y2

and use polar coordinates to obtain

Area =∬
D

1
√

1 − x2 − y2
dA = ∫

3π
2

π
2

∫

− cos θ

0

1
√

1 − r2
r dr dθ = ∫

3π
2

π
2

[−
√

1 − r2]
− cos θ

0
dθ

= ∫

3π
2

π
2

1 − ∣ sin θ∣dθ = 2 ⋅ ∫
π

π
2

1 − sin θ dθ = π − 2.

By symmetry, one may consider D = {(x, y) ∶ (x −
1

2
)
2

+ y2 =
1

4
} and compute likewise.

Solution II. The surface is parametrized by

r(u, v) = (sinu cos v, sinu sin v, cosu), 0 ≤ u ≤
π

2
,
π

2
+ u ≤ v ≤

3π

2
− u.

We compute ∣ru × rv ∣ = sinu and integrate by parts to obtain

Area = ∫

π
2

0
∫

3π
2
−u

π
2
+u

sinudv du = ∫

π
2

0
(π − 2u) sinudu = [−(π − 2u) cosu − 2 sinu]

π/2
0 = π − 2.

Grading scheme
3 points for the region, 5 points for the integrand, 1 point for calculation and 1 point for the correct
answer.
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(01-02í) Suppose that f(x, y, z) is a scalar function with continuous second partial derivatives. Fix
a point P0 = (x0, y0, z0). Consider spheres Sρ centered at P0 with radius ρ > 0.

(a) (2 points) Parametrize Sρ with spherical coordinates r(ϕ, θ) = (x0+ρ sinϕ cos θ, y0+ρ sinϕ sin θ, z0+
ρ cosϕ), 0 ≤ ϕ ≤ π, and 0 ≤ θ ≤ 2π. Write down the double integral in ϕ and θ that represents the
average value of f on Sρ.

(b) (4 points) Let function A(ρ) be the average value of f on Sρ, for ρ > 0. Evaluate A′(ρ) in terms

of ∬
Sρ
∇f ⋅ dS.

(c) (4 points) If ∇2f = fxx+fyy+fzz is always positive, show that A(ρ) is increasing. If ∇2f(x, y, z) = 0
for all (x, y, z), compute A(ρ).

Solution:

1. {
rφ = (ρ cosφ cos θ, ρ cosφ sin θ,−ρ sinφ)
rθ = (−ρ sinφ sin θ, ρ sinφ cos θ,0)

⇒ rφ × rθ = ρ
2 sinφ(sinφ cos θ, sinφ sin θ, cosφ) (1 point)

A(ρ) =
1

Area(Sρ)
∬

Sρ
f(x, y, z)dS =

1

4πρ2 ∫
2π

0
∫

π

0
f(r(φ, θ)) ∣rρ × rθ∣dφdθ

∵r(φ, θ) is Spherical coordinate, ∴ ∣rφ × rθ∣ = ρ
2 sinφ

⇒ A(ρ) =
1

4π ∫
2π

0
∫

π

0
f(r(φ, θ)) sinφ dφdθ (1 point)

2. A′(ρ) =
d

dρ
(

1

4π ∫
2π

0
∫

π

0
f(r(φ, θ)) sinφ dφdθ) =

1

4π ∫
2π

0
∫

π

0

d

dρ
f(r(φ, θ)) sinφ dφdθ

=
1

4π ∫
2π

0
∫

π

0
(∇f(r(φ, θ)) ⋅

d

dρ
r(φ, θ)) sinφ dφdθ (2 points)

∵
d

dρ
r(φ, θ) = (sinφ cos θ, sinφ sin θ, cosφ), (1 point)

∴A′(ρ) =
1

4π ∫
2π

0
∫

π

0
∇f(r(φ, θ)) ⋅

rφ × rθ
ρ2

dφdθ =
1

4πρ2∬Sρ
∇f ⋅ dS (1 point)

3. By Divergence Theorem,

A′(ρ) =
1

4πρ2∬Sρ
∇f ⋅ dS =

1

4πρ2∭Bρ
div(∇f)dV (1 point)

=∭
Bρ
∇ ⋅ (∇f) dV =∭

Bρ
∇2f dV > 0, where Bρ is the ball centered at P0 with radius ρ.

That is, Bρ = {(x, y, z) ∈ R3 ∶ x2 + y2 + z2 ≤ ρ}
⇒ A(ρ) is increasing, if ∇2f is always positive. (1 point)

If ∇2f = 0 for all (x, y, z), then A′(ρ) =∭
Bρ
∇2f dV = 0,

that is A(ρ) is a constant. (1 point)

⇒ A(ρ) = A(0) =
1

4π ∫
2π

0
∫

π

0
f(x0, y0, z0) sinφ dφdθ = f(x0, y0, z0) (1 point)
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7. (14 points) Let F = (x − y)i + (y − z)j + (z − x)k be a vector field on R3.

(a) (2 points) Compute curlF on R3.

(b) (6 points) Let S1 be a parametric surface given by r(r, θ) = r cos θi + 2r sin θj + (9 − r2)k for
r ∈ [0,3] and θ ∈ [0,2π], which comes with the standard orientation given by the normal vector
rr × rθ. Find the flux of curlF across S1.

(c) (6 points) Let S2 be a surface defined by the equation
x2

9
+
y2

36
− z2 = 1 for z ∈ [0,1] and endowed

with the orientation given by the downward normal vector. Find the flux of curlF across S2.

x

y

z

1S

x

y

z

2S

n n

Solution:

(a)

curl F⃗ =

RRRRRRRRRRRRRRRRRR

i⃗ j⃗ k⃗
∂

∂x

∂

∂y

∂

∂z
x − y y − z z − x

RRRRRRRRRRRRRRRRRR

= (1,1,1)

divF = 3

(b) Method 1: Direct Calculation

r⃗(r, θ) = (r cos θ,2r sin θ,9 − r2)

r⃗r = (cos θ,2 sin θ,−2r)

r⃗θ = (−r sin θ,2r cos θ,0)

r⃗r × r⃗θ = (4r2 cos θ,2r2 sin θ,2r)

∴∬
S1

curl F⃗ ⋅ dS⃗ =∬
S1

curl F⃗ ⋅ (r⃗r × r⃗θ)dS

= ∫

2π

0
∫

3

0
4r2 cos θ + 2r2 sin θ + 2rdrdθ

= 18π

Method 2: Stokes’ Theorem
At z = 0, r = 3, r⃗ = (3 cos θ,6 sin θ,0),

C = {(x, y, z)∣x = 3 cos θ, y = 6 sin θ, z = 0, where θ ∈ [0,2π]}

∴∬
S1

curl F⃗ ⋅ dS⃗ = ∮
C
F⃗ ⋅ dr⃗

= ∫

2π

0
27 sin θ cos θ + 18 sin2 θdθ

= 18π

Page 10 of 15



Method 3: Stokes’ Theorem

Let S3 = {(x, y, z)∣
x2

9
+
y2

36
≤ 1, z = 0} where n⃗ = k⃗

∴∬
S1

curl F⃗ ⋅ dS⃗ = ∮
C
F⃗ ⋅ dr⃗ =∬

S3

curl F⃗ ⋅ dS⃗

=∬
S1

curl F⃗ ⋅ k⃗dS

=∬
S3

1dS

= 18π (Area of ellipse)

(c) Solution 1. (Direct Compute)

S2 ∶= r(z, θ) = ⟨3
√

1 + z2 cos θ, 6
√

1 + z2 sin θ, z⟩,
0 ≤ z ≤ 1, 0 ≤ θ ≤ 2π (1 point)

rz = ⟨
3z

√
1 + z2

cos θ,
6z

√
1 + z2

sin θ, 1⟩

rθ = ⟨−3
√

1 + z2 sin θ, 6
√

1 + z2 cos θ, 0⟩ (1 point)

rz × rθ = ⟨−6
√

1 + z2 cos θ, −3
√

1 + z2 sin θ, 18z⟩ (1 point)

Take the negative-z direction, thus

∬
S2

curl F ⋅ dS =∬
D

curl F ⋅ [−(rz × rθ)]dA (1 point)

= ∫

2π

0
∫

1

0
6
√

1 + z2 cos θ + 3
√

1 + z2 sin θ − 18z dz dθ

= ∫

2π

0
∫

1

0
−18z dz dθ

= −18π. (2 points)

Solution 2. (Use Stokes’ theorem once)

Let C1 be the boundary of the oval
x2

9
+
y2

36
= 2, z = 1 and C2 be the boundary of the oval

x2

9
+
y2

36
= 1, z = 0.

By Stokes’ theorem, we know that

∬
S2

curl F ⋅ dS = ∮
C1

F ⋅ dr + ∮
C2

F ⋅ dr

where C1 is negative oriented, C2 is positive oriented. (2 points)
Thus, we have
r1 = ⟨3

√
2 cos θ, 6

√
2 sin θ, 1⟩, 0 ≤ θ ≤ −2π

r2 = ⟨3 cos θ, 6 sin θ, 0⟩, 0 ≤ θ ≤ 2π. (2 points)

∬
S2

curl F ⋅ dS

= ∫

−2π

0
⟨3

√
2 cos θ − 6

√
2 sin θ, 6

√
2 sin θ − 1, 1 − 3

√
2 cos θ⟩

⋅⟨−3
√

2 sin θ, 6
√

2 cos θ, 0⟩ dθ

+∫

2π

0
⟨3 cos θ − 6 sin θ, 6 sin θ, 3 cos θ⟩ ⋅ ⟨−3 sin θ, 6 cos θ, 0⟩ dθ

= −36π + 18π = −18π. (2 points)
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Solution 3. (Use Stokes’ theorem twice)

Let C1 be the boundary of the oval D1 = {
x2

9
+
y2

36
= 2, z = 1} and C2 be the boundary of the

oval D2 = {
x2

9
+
y2

36
= 1, z = 0}. Then (2 points)

∬
S2

curl F ⋅ dS = ∮
C1

F ⋅ dr + ∮
C2

F ⋅ dr =∬
D1

curl F ⋅ dS +∬
D2

curl F ⋅ dS

where D1 is oriented downward, D2 is oriented upward. (2 points)

∬
D1

curl F ⋅ dS

=∬
D1

⟨1, 1, 1⟩ ⋅ ⟨0, 0, −1⟩ dA

= −∬
D1

dA

= −A(D1).
Where A(D) is the area of the region D.
Similarly,

∬
D2

curl F ⋅ dS

= A(D2).

∬
S2

curl F ⋅ dS = −A(D1) +A(D2)

= −π ⋅ 3
√

2 ⋅ 6
√

2 + π ⋅ 3 ⋅ 6
= −18π (2 points)

Note:

1. If you do wrong on orientation, the most score you get is 3.
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(01-02í) Let F = (x − y)i + (y − z)j + (z − x)k be a vector field on R3.

(b) (6 points) Let S1 be the part of paraboloid z = x2 + (y − 1)2 thea is below the plane z = 5 − 2y

with downward orientation. Find the flux of F across S1, ∬
S1

F ⋅ dS.

Solution:

(Method I) Let E is the solid bounded by the paraboloid z = x2 + (y − 1)2 and the plane z = 5− 2y.
Then by Divergence Theorem, the flux of F across the boundary of E, (2 points)

∬
S1

F ⋅ dS +∬
S′
F ⋅ dS =∭

E
divF dV ⇒∬

S1

F ⋅ dS =∭
E

3dV −∬
S′
F ⋅ dS

∵z = x2 + (y − 1)2 = 5 − 2y⇒ x2 + y2 = 4,
∴ the projection of the intersection of the paraboloid and the plane to xy− plane is a circle centered
at (0,0) with radius 2.

∭
E
dV = ∫

2π

0
∫

2

0
∫

5−2r sin θ

r2−2r sin θ+1
rdzdrdθ (By Cylindrical coordinate)

= ∫

2π

0
∫

2

0
(5 − 2r sin θ) − (r2 − 2r sin θ + 1)rdzdrdθ = 2π ⋅ ∫

2

0
r(4 − r2)dr = 8π (2 points)

∬
S′
F ⋅ dS =∬

x2+y2≤4
F ⋅ (0,2,1)dA =∬

x2+y2≤4
2y − (5 − 2y) − xdA

=∬
x2+y2≤4

4y − x − 5dA = −5 ⋅ 22π = −20π

⇒∬
S1

F ⋅ dS =∭
E

3dV −∬
S′
F ⋅ dS = 3 ⋅ 8π + 20π = 44π (2 points)

(b) (Method II) S1 ∶ r(u, v) = (u, v, u2 + (v − 1)2)⇒ ru × rv = (−2u,−2(v − 1),1)

∬
S1

F ⋅ dS =∬
u2+v2≤4

F ⋅ (−ru × rv)dudv (2 points)

=∬
u2+v2≤4

2u(u − v) + 2(v − 1)(v − u2 − (v − 1)2) − (u2 + (v − 1)2 − u)dudv

=∬
u2+v2≤4

2u2 + 2v2 + 2u2 − 2(v − 1)3 − u2 − (v − 1)2dudv (By Symmetirc)

=∬
u2+v2≤4

3u2 + 2v2 − 2(v3 − 3v2 + 3v − 1) − (v2 − 2v + 1)dudv

=∬
u2+v2≤4

3u2 + 7v2 + 1 dudv = ∫
2π

0
∫

2

0
(3r2 cos2 θ + 7r2 sin2 θ) r drdθ + 4π (3 points)

= ∫

2π

0
∫

2

0
5r3 drdθ + 4π (∵∫

2π

0
sin2 θdθ = ∫

2π

0
cos2 θdθ)

= 2π ⋅
5

4
r4∣

2

0

+ 4π = 44π (1 points)
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8. (12 points) Let S be the boundary surface of the union of the balls x2+y2+z2 ≤ 1 and x2+y2+(z−1)2 ≤ 1.

x x

y y

z z

(a) (5 points) Use spherical coordinates to parametrize S.

(b) (7 points) Find ∬
S
F ⋅ dS where F = i + j + z2 k and S is given the outward orientation.

Solution:

(a) (sol 1.)

upper surface: < 2 sinφ cosφ cos θ,2 sinφ cosφ sin θ,2 cos2 φ >,0 ≤ θ ≤ 2π,0 ≤ φ ≤
π

3

lower surface: < sinφ cos θ, sinφ sin θ, cosφ >,0 ≤ θ ≤ 2π,
π

3
≤ φ ≤ π

(sol 2.)

upper surface: < 2 sinφ cosφ cos θ,2 sinφ cosφ sin θ, cosφ + 1 >,0 ≤ θ ≤ 2π,0 ≤ φ ≤
2π

3

lower surface: < sinφ cos θ, sinφ sin θ, cosφ >,0 ≤ θ ≤ 2π,
π

3
≤ φ ≤ π

score: the correct answer of upper surface gets 3 points, lower surface gets 2 points. Only
write the correct Spherical coordinate, doesn’t write the range of θ, φ gets 1 point
separately. The correct range of θ on both surface gets 1 point. The correct range
of φ on both surface gets 1 point separately.

(b) (sol 1.)

Use divergence theorem: ∫ ∫ FdS = ∫ ∫ ∫ divFdV

upper surface: ∫
2π

0
∫

π
3

0
∫

2 cosφ

0
2ρ cosφρ2 sinφdρdφdθ =

21π

8

lower surface: ∫
2π

0
∫

π

π
3

∫

1

0
2ρ cosφρ2 sinφdρdφdθ =

−3π

8

total:
9π

4
(sol 2.)

upper surface: J =

RRRRRRRRRRRRRR

i j k
2 cos(2φ) cos θ 2 cos(2φ) sin θ − 2 sin(2φ)
− sin(2φ) sin θ sin(2φ) cos θ 0

RRRRRRRRRRRRRR

= < −2 sin2(2φ) cos θ,2 sin2(2φ) sin θ, sin(4φ) >

∫

2π

0
∫

π
3

0
< 1,1,4 cos4 φ >< −2 sin2(2φ) cos θ,2 sin2(2φ) sin θ, sin(4φ) > dφdθ
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=
87π

32

lower surface: J =

RRRRRRRRRRRRRR

i j k
cosφ cos θ cosφ sin θ − sinφ
− sinφ sin θ sinφ cos θ 0

RRRRRRRRRRRRRR

= < sin2 φ cos θ, sin2 φ sin θ, sinφ cos θ >

∫

2π

0
∫

π

π
3

< 1,1, cos2 φ >< sin2 φ cos θ, sin2 φ sin θ, sinφ cos θ > dφdθ

=
−15π

32

total:
9π

4
score: Knowing to use divergence theorm gets 2 points, other method 1point. Use the upper

answer of Spherical coordinate(ρ2 sinφ) gets 2 points. The correct interval of integral
gets 1 point separately, however you do write the correct value of integral.
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