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1. (15% total)

(a) (5%) Derive the MacLaurin series of tan−1 x.

(b) (5%) Find the value of a ∈ R such that the limit lim
x→0

sin(ax) − sinx − tan−1 x
x3

is finite.

(c) (5%) Evaluate the above limit.

Solution:

(a) (tan−1 x)′ =
1

1 + x2
(1%)

tan−1 x = ∫
1

1 + x2
dx = ∫

∞
∑
j=0

(−1)jx2jdx =
∞
∑
j=0
∫ (−1)jx2jdx =

∞
∑
j=0

(−1)j
x2j+1

2j + 1
+ c (3%)

(P.S. tan−1 x = x −
x3

3
+
x5

5
+ ... by calculate f ′(0), ..., f (5)(0) (2%)).

Let x = 0, c = tan−1 0 = 0. Its radius of convergence is 1. ∣x∣ < 1 (1%)

(b) sinx = x −
x3

3!
+
x5

5!
− ... (3%) (P.S. sinx = x −

x3

3!
+ ... (2%))

sin(ax) − sinx − tan−1 x
x3

= (a − 2)
1

x2
+ {

1 − a3

3!
+

1

3
} +O(x2).

Thus, a = 2. (2%)

(c) The limit is
1

6
(1 − 8) +

1

3
=
−5

6
(5%)
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2. (10% total) Consider the power series
∞
∑
n=1

(−1)nxn

(n + 1) ln(n + 1)
.

(a) (5%) Determine its radius of convergence.

(b) (5%) Determine its interval of convergence.

Solution:

(a) Let cn =
(−1)n

(n + 1) ln(n + 1)
. Use Ratio Test we have

lim
n→∞

∣cn+1xn+1∣
∣cnxn∣

= ∣x∣ lim
n→∞

n + 1

n + 2

ln(n + 1)

ln(n + 2)
= ∣x∣ ⋅ 1 < 1

Where lim
n→∞

ln(n + 1)

ln(n + 2)

L
= lim

n→∞
n + 2

n + 1
= 1.

Thus the radius of convergence R = 1.

(b) Let bn = ∣cn∣.
Try x = 1. (i) bn clearly decreasing (ii) lim

n→∞ bn = 0 obviously.

Thus by Alternating Series Test
∞
∑
n=1

(−1)nbn converges.

Try x = −1. (i) bn positive (ii) bn decreasing (iii) f(n) = bn continuous

Then by Integral Test, ∫
∞

1
f(x)dx = ln ln(x + 1)∣∞1 diverges implies

∞
∑
1

bn diverges.

Therefore the interval of convergence is (−1,1].

Grading

(a) (2 pts) State correct test.
(2 pts) Correct calculation.
(1 pt) Correct answer

(b) (1 pt) Case x = 1, state correct test.
(1 pt) Case x = 1, correct calculation
(1 pt) Case x = −1, state correct test.
(1 pt) Case x = −1, correct calculation
(1 pt) Correct answer

Remarks

� If lim
n→∞

an
bn

= 0, then ∑ bn converges implies ∑an converges, but ∑ bn diverges means nothing.
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3. (20% total) Consider the space curve r(t) = ti + t2j +
2t3

3
k.

(a) (5%) Find the arc length of the curve from t = 0 to t = a.

(b) (5%) Find the curvature κ(0) at t = 0.

(c) (5%) Find the unit tangent T(0) at t = 0.

(d) (5%) Find the unit normal N(0) at t = 0.

Solution:

(a)

r′(t) = (1,2t,2t2) (2%)

∣r′(t)∣ =
√

1 + 4t2 + 4t4 = 2t2 + 1 (1%)

if a ≥ 0

s = ∫
a

0
∣r′(t)∣dt = ∫

a

0
(2t2 + 1)dt =

2

3
a3 + a (2%)

if a < 0

s = ∫
0

a
∣r′(t)∣dt = ∫

0

a
(2t2 + 1)dt = −

2

3
a3 − a

(b)
(Method I)

dT

ds
= κN ⇒ κ =

∣dT
dt

∣

∣r′(t)∣
(1%)

T (t) =
r′(t)
∣r′(t)∣

= (
1

2t2 + 1
,

2t

2t2 + 1
,1 −

1

2t2 + 1
)

T ′(t) = (
−4t

(2t2 + 1)2
,
−4t2 + 2

(2t2 + 1)2
,

4t

(2t2 + 1)2
) (2%)

κ(0) =
∣T ′(0)∣
∣r′(0)∣

=
∣(0,2,0)∣

∣(1,0,0)∣
= 2 (2%)

(Method II)

κ =
∣r′ × r′′∣
∣r′∣3

(1%)

r′(t) = (1,2t,2t2) r′(0) = (1,0,0)

r′′(t) = (0,2,4t) r′′(0) = (0,2,0)

∣r′(0) × r′′(0)∣ = ∣(0,0,2)∣ = 2 (2%)

∣r′(0)∣3 = ∣(1,0,0)∣3 = 1

κ(0) =
∣r′(0) × r′′(0)∣

∣r′(0)∣3
= 2 (2%)

沒有代入t=0扣2%
(c)

T (0) =
r′(0)
∣r′(0)∣

= (1,0,0) (5%)

若因前面r′(t), ∣r′(t)∣算錯而算錯T (0)會酌量扣分
沒有代入t=0扣2%

(d)

N(0) ∥ T ′(0) = (0,2,0) (3%)
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若因前面r′(t), ∣r′(t)∣, T ′(t)算錯而算錯T ′(0)會酌量扣分

N(0) =
(0,2,0)

∣(0,2,0)∣
= (0,1,0) (2%)

沒有代入t=0扣2%
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4. (11%) Let z = f(x, y) and x = r cos θ, y = r sin θ.

(a) (6%) Express
∂z

∂x
in terms of r, θ and partial derivatives with respect r, θ.

(b) (5%) Express
∂2z

∂x2
in terms of r, θ and partial derivatives with respect r, θ.

Solution:

(a). Note that r =
√
x2 + y2 and θ = tan−1

y

x
.

∂z

∂x

=
∂z

∂r

∂r

∂x
+
∂z

∂θ

∂θ

∂x
(♣ 3%)

=
∂z

∂r
⋅

x
√
x2 + y2

+
∂z

∂θ
⋅

−y

x2 + y2
(♣ 2%)

=
∂z

∂r
cos θ +

∂z

∂θ
⋅
− sin θ

r
(♣ 1%)

(b). From above, we know
∂

∂x
= cos θ

∂

∂r
−

sin θ

r

∂

∂θ
.

∂2z

∂x2

= (cos θ
∂

∂r
−

sin θ

r

∂

∂θ
)(

∂z

∂r
cos θ +

∂z

∂θ
⋅
− sin θ

r
) (♣ 3%)

=
∂2z

∂r2
cos2 θ −

∂2z

∂r∂θ

sin θ cos θ

r
+
∂z

∂θ

sin θ cos θ

r2
+

sin θ

r
(−

∂2z

∂r∂θ
cos θ +

∂z

∂r
sin θ +

∂2z

∂θ2
sin θ

r
+
∂z

∂θ

cos θ

r
)

=
∂2z

∂r2
cos2 θ −

∂2z

∂r∂θ

2 sin θ cos θ

r
+
∂2z

∂θ2
sin2 θ

r2
+
∂z

∂r

sin2 θ

r
+
∂z

∂θ

2 sin θ cos θ

r2
(♣ 2%)
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5. (20% total) Let f(x, y, z) = (x2 + z2) sin
πxy

2
+ yz2 and a point p = (1,1,−1). Answer the following:

(a) (5%) Find the gradient of f at p.

(b) (5%) Find the approximate value of f(0.98,1.02,−0.97).

(c) (5%) Find the plane tangent to the level surface through p defined by f(x, y, z) = f(p) = 3.

(d) (5%) If a bird flies through p directly to the point (2,−1,1) with speed 5, what is the rate of change of f as
seen by the bird at p?

Solution:

(a)

∂f

∂x

RRRRRRRRRRR(1,1,−1)
= [2x sin

πxy

2
+ (x2 + z2) (cos

πxy

2
)
πy

2
]

RRRRRRRRRRR(1,1,−1)
= 2

∂f

∂y

RRRRRRRRRRR(1,1,−1)
= [(x2 + z2) (cos

πxy

2
)
πx

2
+ z2]

RRRRRRRRRRR(1,1,−1)
= 1

∂f

∂z

RRRRRRRRRRR(1,1,−1)
= [2z sin

πxy

2
+ 2yz]

RRRRRRRRRRR(1,1,−1)
= −4

∴∇f(1,1,−1) = [
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k]

RRRRRRRRRRR(1,1,−1)
= 2i + j − 4k

Remark: (4%) for the partial derivatives; (1%) for evaluation of the gradient

(b) The linear approximation L(x, y, z) of f(x, y, z) at the point p = (1,1,−1) is

L(x, y, z) = f(1,1,−1) +
∂f

∂x

RRRRRRRRRRR(1,1,−1)
(x − 1) +

∂f

∂y

RRRRRRRRRRR(1,1,−1)
(y − 1) +

∂f

∂z

RRRRRRRRRRR(1,1,−1)
(z + 1)

= 3 + 2(x − 1) + (y − 1) − 4(z + 1) (3%)

∴f(0.98,1.02,−0.97) ≈ L(0.98,1.02,−0.97) = 3 + 2(−0.02) + 0.02 − 4(0.03) = 2.86 (2%)

(c) Notice that f(p) = f(1,1,−1) = 3, which means that the plane tangent to the level surface is the tangent
plane of f(x, y, z) at the point p. Therefore, the tangent plane equation is

2(x − 1) + (y − 1) − 4(z + 1) = 0 (5%)

(d) The unit vector u from point p = (1,1,−1) to point q = (2,−1,1) is

u =
q − p

∣q − p∣
= (

1

3
,−

2

3
,
2

3
) (1%)

Then, the directional derivative

Duf(p) = ∇f(p) ⋅ u = (2,1,−4) ⋅ (
1

3
,−

2

3
,
2

3
) = −

8

3
(3%)

The rate of change of f as seen by the bird at p with speed v = 5 is

Duf(p) × v = −
40

3
(1%)
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6. (12%) Find the local extreme values and saddle points of f(x, y) = x2y − xy2 + xy − y2.

Solution:

{
fx = 2xy − y2 + y = y(2x − y + 1) = 0 ⋯(∗)

fy = x2 − 2xy + x − 2y = (x + 1)(x − 2y) = 0 ⋯(�)

For (∗):

i. If y = 0, then x(x + 1) = 0 from (�) ⇒ x = 0 or −1.

Hence, we have (0,0), (−1,0).

ii. If y = 2x + 1, then 3x2 + 5x + 2 = 0 from (�) ⇒ x = −1 or −
2

3
.

Hence, we have (−1,−1), (−
2

3
,−

1

3
).

Note that we can get the same result by considering (�). Therefore, the critical points are (0,0), (−1,0), (−1,−1), (− 2
3
,− 1

3
) .

(1% for each point)

Since
fxx = 2y, fxy = fyx = 2x − 2y + 1, fyy = −2x − 2,

we now have
D(x, y) = fxxfyy − f

2
xy = −4(x + 1)y − (2x − 2y + 1)2.

i. D(0,0) = −1 < 0 ⇒ (0,0) is a saddle point. (2%)

ii. D(−1,0) = −1 < 0 ⇒ (−1,0) is a saddle point. (2%)

iii. D(−1,−1) = −1 < 0 ⇒ (−1,−1) is a saddle point. (2%)

iv. D(−
2

3
,−

1

3
) =

1

3
> 0, fxx(−

2

3
,−

1

3
) = −

2

3
< 0

⇒ f(x, y) has a local maximum at(− 2
3
,− 1

3
). (1%)

And the local maximum value at (−
2

3
,−

1

3
) is f(−

2

3
,−

1

3
) = 1

27
. (1%)
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7. (12%) Find the maximum and the minimum of the function f(x, y) = 3x2 − 2y2 on the curve 2x2 − 2xy + y2 = 1.

Solution:

Let g(x, y) = 2x2 − 2xy + y2 − 1 = 0 By applying the method of Lagrange multipliers, we need to solve

∇f = λ∇g [2 points] and g(x, y) = 0

or

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

6x = λ(4x − 2y) (1)

−4y = λ(−2x + 2y) (2)

2x2 − 2xy + y2 − 1 = 0 (3)

[6 points]
(1 points per coefficient in (1)(2))

Clearly, x ≠ 0, y ≠ 0, λ ≠ 0, or g(x, y) fails to be 0. So, dividing (1) by (2) gives

3x

−2y
=

2x − y

−x + y
⇒ 3x2 − 7xy + 2y2 = 0

(3x − y)(x − 2y) = 0 ∴ 3x = y or x = 2y

� Case 1: 3x = y. Plug this into (3) can get

x2 = 1/5, y2 = 9/5 ∴ f(x, y) = 3x2 − 2y2 =
3

5
−

18

5
= −3

� Case 2: x = 2y. Plug this into (3) can get

y2 = 1/5, x2 = 4/5 ∴ f(x, y) = 3x2 − 2y2 =
12

5
−

2

5
= 2

Since the extreme value must exist, 2 is the absolute maximum [2 points]

and − 3 is the absolute minimum [2 points]

Page 8 of 8


