105214 FA06-10BIEA R EM E FIF D RHE

1. (11%) Let F = zcos(xz)i+ ze¥?j + (x cos(zz) + ye¥? k.
(a) (8%) Find a scalar function ¢(x,y,z) such that Vo =F.

(b) (3%) Evaluate [ F -dr, where C is the curve r(t) = (cos(nt?),In(t +1),tan"'(¢)),0 <t < 1.

Solution:
(a) Because

Pa(,y, 2) = 2 cos (x2)
(Py(il?, Y, Z) = ze¥”

v (x,y,2) =xcos(xz) +ye’”

= 99(13,2172’) = sin ('TZ) + gl(yaz)
= 90(1'7:%2) = eyz +gg($(},Z)
= p(x,y,2) =sin (zz) + e¥* + g3(x,y),

we can conclude that ¢(z,y,z) = sin (xz) + e¥* + const.

o If ¢ is written as a vector but the above three calculations are right, you lose 3pts.

(b) Because F is conservative,
LFdr= (1) - p(x(0))
= 90(_17 In 2a 7-‘-/4) - @(1a 07 O)

1
= — 2™
V2

2. (12%) Let C be the polar curve defined by 72 = cos 26 in the first quadrant. Evaluate /Cy ds.

0.8 7
’
’
0.6 7
0.4

0.2 7

0.8

Solution:

Let x =rcosf, y =rsind (2pt)

Joyds = fo% rsinf\/r? + (%)2d9 (4pt)

% . —sin 20 2
= [t rsind cos29+(m) dé
:fozrsint?\/mlsﬁ(w (4pt)

= fog sin 6d6 = — cos 9‘: =1-Y2 (2pt)

8
3. (11%) Sketch the region of integration and evaluate the integral f
0

3
f\/ 1+x

x
cos(er 1)dyda:.
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Solution:

5_

(4 points)

1) dx dy (4 points)

8 3 z
f f cos( ) dy dx
0 JVi+z y+1
x
Y+
2

3 yz—l
= [ f cos(
1 Jo
y -1

; flg [(y+ 1)sm(yfl)] dy

0

= [C ) [siny- 1)) dy

Let u=y+1, dv = sin(y — 1)dy, and by applying Integration by parts,

S 1) Tsinty - 1)) dy
3

3
[~ vty -] +[sints- ) (2 points
=—4cos(2) +2 + sin(2)1— 0 ' (1 points)
=2+ sin(2) - 4cos(2)

Note:

1. If you sketch the wrong part of the region, you will gain (2 points) for sketching part.

3 8
2. If you write [ f L, instead of the correct answer, you will gain
1 y?-1

(2 points).

3 8
3. If you write [ / , instead of the correct answer, you will gain
0 y?-1
(0 point).

4. TIf you miss the minus in Integration by parts, you will gain (1 point).

4. (12%) Evaluate [[R e% dA, where R is the region in the zy-plane bounded by the four lines 2z —y =1, 2z —y = 2,
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r—-3y=0and 3z -4y =0.

Solution:
Method 1:
1
Let u =z +2y ; v=2x —y, then we can get |J| _|‘8( ) | = =
z+2y v, 1 1 2 . ) 1 2
Therefore, ﬂ ey dA = f [ ev|J|dudv = f f ev fdudv = [ vev|n ¥ = £ [ v(e“—e) = —(e*—e)
1 1
Method 2:
1
Let u=2x -y ; v=u1x- 3y, then we can get |J| —|‘a( ,v) | = 5
Therefore, ffRe;;QZ dA = [ / e’w | J|dvdu = f / e e dvdu = —(e -e).
Method 3:
Let u =2z -y ;v =7, then we can get |J| = |‘g§x’z§ | = (QUU 1)2
Therefore, ff % dA = f f e |J|dudv = f f e T —— dudv
R (2v 1)2
=15 3 (2 _e).
‘h:uﬂ“ﬁ J B4 Bo L TREN4D EmIEREEREET2.

5. (16%) Let E be the space region bounded by the surfaces

Sy={(z,y,2)| z=-1+v22 +y?, z<0},

S2 = {($7y72)| Z:1—I2—y2, ZZO}?

and V(z,y,2) = —yi+xj + zk.

(a) (6%) Evaluate /] o divV dV, where Q is the solid region enclosed by S; U Ss.

(4%) State the Divergence Theorem and evaluate the total outward flux

ff V- ds.
S1U52

(¢) (6%) Compute the upward flux of V across Ss.

Solution:
Solution 5(a).

ffo divVdV = [f 14V
- [ u f f o ' rdzdrdo

5T

6

Note:

1. The shape of region 2 is not hemisphere.

2. divV =1, 2points

3. Volume of region 1 =%, 2points
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4. Volume of region 2 =7, 2points

Solution 5(b).

Divergence Theorem:

Q: simple solid region

S:boudary surface of 2 with positive outward orientation.

V = (P,Q, R): vector field with P,,Q,, R, continuous on an open region that contains 2.

Then we have
fff Vdy = ff V-dS
Q S
f/ v.ods ="
S]USQ 6

Note:

—_

. Q, 1point

. Pp,Qy, R, 1point

- JlqVav = [[¢V -dS, 1point
- [s,0s, V - dS = 3, 1point

U V)

Solution 5(c).
Method 1: Direct calculation

r(u,v) = (ucosv,usinv,1 —u?), 0<u<1,0<v<2r

7 = (cos v, sinv, —2u)
ry = (—usinv,ucosv,0)
Ty X Ty = (2u? cos v, 2u® sinv, u)

V~rux7°v:u—u3

27 1 T
ff V-dS:f / u-uddudv = =
Sa 0 0 2
Method 2
Let S5 = {(z,y,2)[z? +4*><1,2=0}. Then V-n =0 on S3 where n = -k which implies

fS3V-dS:O
.'-ffSQVdS:f/]QZVdV—ffSSV'dS:g

where volume of region 2 has been calculated in part (a).
Note: [f52 V-dS = [/Qz VdV is WRONG.

This leads to

Method 3

ff V~dS=f[deV— V.dS
So Q S1
bm w

3

TP

where the surface integral of S is as follows:

r(u,v) = (ucosv,usinv,-1+u), 0<u<l,0<v<27
74 = (cosv,sinwv, 1)
ry = (—usinwv, ucosw,0)

Ty X Ty = (ucosv, usinv, —u)

Vory xry =u—u?
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27 1 T
[[ V-dS:/ / u—uldudv = =
Sa 0 0 3

Note: Be careful of the sign of the normal

6. (12%) Evaluate §1§C(x2y2 +y)dx — (2zy® - 3x)dy, where C is described by the polar equation r = 1 - cos oriented

counterclockwise.

Solution:

Let D={0<r<1-cosf,0<60 <2} be the region bound by the curve C. Apply Green’s Theorem,
515 (z?y? +y) dx - (2zy® - 3x) dy = //(—23/3 +3) - (22%y +1)dA
¢ D
- ff (2 - 202y - 2%) dA. (6 points)
D

Use polar coordinate x = rcos#, y = rsinf,

2
[[ (2-22%y - 2y°)dA = [ (2-2r3sin @) rdrd (5 points)
0

D
27 2 r=1-cos @
= [ (7‘2 - Zr%sind )d&
0 5

r=0
2m
= (1—0089)2—%sin@(l—cosﬁ)‘r’d@
0

1 2 0=2m
:27r+0+7~27r—[—(1—cos9)6] = 3. (1 points)
2 30 0=0

7. (12%) Find the area of the sphere 22 + y? + 22 = 4 lying inside the cylinder (z —1)% + 2 = 1.

Solution:

The area

- 1422422 ‘nts
= 2f /(‘x—1)2+y2§1 L+22+22dA  [3 points]

— —y _
(z=V4-22-9y2,2, = 2y = ﬁ) [1 points]
Vi-x? -y Vid-z? -y

2
[1 points]

—=f [ A
(@-1)2+y2<1 \ f4 — 22 — 42

(Use the polar coordinate to calculate)

5 2cosf 2 drdd [ }
:Qf f rdr 3 points
-z Jo V4 -2

5 2cos 6 1
-4 / f (4-2)3dr?d9 |1 points|
0 0

=8 [T - (4= 308 (1 points]
0

= 8/ *9 - 25in0do [1 points]
0

=8(mr-2) [l points]

8. (14%) Compute [[ curlF-dS, where F = e**i+(z?+2?)j+(y+cos z)k and where S = {(ac7 Y, 2)
oriented so that the boundary is counterclockwise when viewed from above.

2 2
%+%+z2:1andx+2z20}
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Solution:
Method 1:
curlF =V x F = (1-2z,xe"* 2z) (3 pts)

Let T be the intersection of the ellipsoid with the plane = + 2z = 0. Note that the boundary of S and T are the
same. On the plane x + 2z = 0 which is z = —%x.
Parametrize T' by v(z,y) = (x,y, %) with the condition <

2
vz = (1,0, %),’yy = (%,O,l) = Y XYy = (%,O,l) (3 pts)
Let D be the projection of T onto = — y plane.

Now, by Stoke’s Theorem
f /ScurlF~dS: [ [ curlF - dS

1
ff 1+x:ce2 ,x)-(g,O,l)dxdy

1
—[/ ) 7+5xdacdy (6 pts)
2248<1 2

N

%Sl(%+%+z2£1).

By symmetry, [ [, 2zdzdy = 0.
So

1 3
ff .2 7+ xdxdy—fArea( ) = §~7r-\/§-3 \/_7r (2 pts)
2 TS
Thus [ [qcurlF -dS = 3v2
Method 2:

C' is the intersection of Z- -
2

We have z = —% and ””

+z =1land z+2z=0.

+ .J>
o

1. So we can parametrize C' as

V2 cos(6)

7(0) = (V2 cos(0),3sin(h), - 5

),0<60 <27 (3 pts)

On C , we have

V2O (1

F= ((3_C052(‘9)7 g cos?(6),3sin(#) + cos(-
V/2sin(h)

7' () = (—v/2sin(8), 3 cos(6), 5

) (1pt)

3v/2sin?(9) | V2sin(0) cos(~Y25)
2 2

= F-~'(0) = —/2sin(0)e” < “(6) + cos®(6) +

Then

3v/2sin?(6) . V2sin(9) cos(_ﬂc;)s(@)) ]
2

fF'dr=f02ﬂ( V2sin(f)e (‘9>+ cos’ () + 2

0 (3 pts)
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. \/Ecos(e)
2s 2] 3(— ————= . 3
V2sin( )COZ( z ) is an odd function.

Note that f(0) = —v/2sin(#)e~ " (0 4
Thus f;'™ f(0)d0 = [, f(0)d6 =0,

We also have /0% cos®(6)de = 0.

So [ F-dr = [27 2/25000) g  p2m 3v/2(1cos(20)) _ 5v/22m _ 8VET (3 p)

Thus, by Stoke’s Theorem [ [¢curlF -dS = @ (3 pts).
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