1052微甲06-10班期末考解答和評分標準

- 1. (11%) Let $\mathbf{F} = z \cos(xz)\mathbf{i} + ze^{yz}\mathbf{j} + (x\cos(xz) + ye^{yz})\mathbf{k}$.
 - (a) (8%) Find a scalar function $\varphi(x, y, z)$ such that $\nabla \varphi = \mathbf{F}$.
 - (b) (3%) Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is the curve $\mathbf{r}(t) = (\cos(\pi t^2), \ln(t+1), \tan^{-1}(t)), 0 \le t \le 1$.

Solution:

(a) Because

$$\varphi_x(x,y,z) = z\cos(xz) \qquad \Rightarrow \varphi(x,y,z) = \sin(xz) + g_1(y,z)$$

$$\varphi_y(x,y,z) = ze^{yz} \qquad \Rightarrow \varphi(x,y,z) = e^{yz} + g_2(x,z)$$

$$\varphi_z(x,y,z) = x\cos(xz) + ye^{yz} \qquad \Rightarrow \varphi(x,y,z) = \sin(xz) + e^{yz} + g_3(x,y),$$

we can conclude that $\varphi(x, y, z) = \sin(xz) + e^{yz} + \text{const.}$

- \bullet If φ is written as a vector but the above three calculations are right, you lose 3pts.
- (b) Because **F** is conservative,

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \varphi(\mathbf{r}(1)) - \varphi(\mathbf{r}(0))$$

$$= \varphi(-1, \ln 2, \pi/4) - \varphi(1, 0, 0)$$

$$= -\frac{1}{\sqrt{2}} + 2^{\pi/4} - 1.$$

2. (12%) Let C be the polar curve defined by $r^2 = \cos 2\theta$ in the first quadrant. Evaluate $\int_C y \ ds$.

Solution:

Let $x = r \cos \theta$, $y = r \sin \theta$ (2pt)

$$\int_C y ds = \int_0^{\frac{\pi}{4}} r \sin \theta \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta \quad (4\text{pt})$$

$$= \int_0^{\frac{\pi}{4}} r \sin \theta \sqrt{\cos 2\theta + \left(\frac{-\sin 2\theta}{\sqrt{\cos 2\theta}}\right)^2} d\theta$$

$$= \int_0^{\frac{\pi}{4}} r \sin \theta \frac{1}{\sqrt{\cos 2\theta}} d\theta \quad (4\text{pt})$$

$$= \int_0^{\frac{\pi}{4}} \sin \theta d\theta = -\cos \theta \Big|_0^{\frac{\pi}{4}} = 1 - \frac{\sqrt{2}}{2} \quad (2\text{pt})$$

3. (11%) Sketch the region of integration and evaluate the integral $\int_0^8 \int_{\sqrt{1+x}}^3 \cos\left(\frac{x}{y+1}\right) dy dx$.

$$\int_{0}^{8} \int_{\sqrt{1+x}}^{3} \cos\left(\frac{x}{y+1}\right) dy dx
= \int_{1}^{3} \int_{0}^{y^{2}-1} \cos\left(\frac{x}{y+1}\right) dx dy
= \int_{1}^{3} \left[(y+1)\sin\left(\frac{x}{y+1}\right) \right]_{0}^{y^{2}-1} dy
= \int_{1}^{3} (y+1) \left[\sin(y-1) \right] dy$$
(4 points)

Let u = y + 1, dv = sin(y - 1)dy, and by applying Integration by parts,

$$\int_{1}^{3} (y+1) \left[\sin(y-1) \right] dy$$

$$= \left[-(y+1)\cos(y-1) \right]_{1}^{3} + \left[\sin(y-1) \right]_{1}^{3}$$

$$= -4\cos(2) + 2 + \sin(2) - 0$$

$$= 2 + \sin(2) - 4\cos(2)$$
(2 points)
$$= (1 \text{ points})$$

Note:

- 1. If you sketch the wrong part of the region, you will gain (2 points) for sketching part.
- 2. If you write $\int_1^3 \int_{y^2-1}^8 \cdots$ instead of the correct answer, you will gain (2 points).
- 3. If you write $\int_0^3 \int_{y^2-1}^8 \cdots$ instead of the correct answer, you will gain (0 point).
- 4. If you miss the minus in Integration by parts, you will gain (1 point).
- 4. (12%) Evaluate $\iint_R e^{\frac{x+2y}{2x-y}} dA$, where R is the region in the xy-plane bounded by the four lines 2x y = 1, 2x y = 2,

x - 3y = 0 and 3x - 4y = 0.

Solution:

Method 1:

Let
$$u = x + 2y$$
; $v = 2x - y$, then we can get $|J| = \left| \frac{\partial(x,y)}{\partial(u,v)} \right| = \frac{1}{5}$

Therefore,
$$\iint_{R} e^{\frac{x+2y}{2x-y}} dA = \int_{1}^{2} \int_{v}^{2v} e^{\frac{u}{v}} |J| du dv = \int_{1}^{2} \int_{v}^{2v} e^{\frac{u}{v}} \frac{1}{5} du dv = \frac{1}{5} \int_{1}^{2} v e^{\frac{u}{v}} |u=2v| = \frac{1}{5} \int_{1}^{2} v (e^{2}-e) = \frac{3}{10} (e^{2}-e).$$

Method 2:

Let
$$u = 2x - y$$
; $v = x - 3y$, then we can get $|J| = \left| \frac{\partial(x,y)}{\partial(u,v)} \right| = \frac{1}{5}$

Therefore,
$$\iint_{R} e^{\frac{x+2y}{2x-y}} dA = \int_{1}^{2} \int_{-u}^{0} e^{\frac{u-v}{u}} |J| dv du = \int_{1}^{2} \int_{-u}^{0} e^{\frac{-v}{u}} e^{\frac{1}{2}} dv du = \frac{3}{10} (e^{2} - e).$$

Method 3:

Let
$$u = 2x - y$$
; $v = \frac{x}{y}$, then we can get $|J| = \left| \frac{\partial(x,y)}{\partial(u,v)} \right| = \frac{u}{(2v-1)^2}$

Let
$$u = 2x - y$$
; $v = \frac{x}{y}$, then we can get $|J| = \left| \frac{\partial(x,y)}{\partial(u,v)} \right| = \frac{u}{(2v-1)^2}$
Therefore, $\iint_R e^{\frac{x+2y}{2x-y}} dA = \int_{\frac{4}{3}}^3 \int_1^2 e^{\frac{v+2}{2v-1}} |J| du dv = \int_{\frac{4}{3}}^3 \int_1^2 e^{\frac{v+2}{2v-1}} \frac{u}{(2v-1)^2} du dv$

 $=rac{3}{10}(e^2-e).$ 給分標準: J 算錯扣4分 積分上下界找錯扣4分 前面兩項找對答案算錯扣2分.

5. (16%) Let E be the space region bounded by the surfaces

$$S_1 := \{ (x, y, z) | z = -1 + \sqrt{x^2 + y^2}, z \le 0 \},$$

$$S_2 := \{ (x, y, z) | z = 1 - x^2 - y^2, z \ge 0 \},$$

and $\mathbf{V}(x, y, z) = -y\mathbf{i} + x\mathbf{j} + z\mathbf{k}$.

- (a) (6%) Evaluate $\iiint_{\Omega} \operatorname{div} \mathbf{V} dV$, where Ω is the solid region enclosed by $S_1 \cup S_2$.
- (b) (4%) State the Divergence Theorem and evaluate the total outward flux $\iint_{S_1 \cup S_2} \mathbf{V} \cdot \mathbf{dS}$.
- (c) (6%) Compute the upward flux of **V** across S_2 .

Solution:

Solution 5(a).

$$\begin{split} \iiint_{\Omega} \mathrm{div} V dV &= \iiint_{\Omega} 1 dV \\ &= \int_{0}^{2\pi} \int_{0}^{1} \int_{-1+r}^{1-r^{2}} r dz dr d\theta \\ &= \frac{5\pi}{6} \end{split}$$

Note:

- 1. The shape of region 2 is not hemisphere.
- 2. divV = 1, 2points
- 3. Volume of region $1 = \frac{\pi}{3}$, 2points

4. Volume of region $2 = \frac{\pi}{2}$, 2points

Solution 5(b).

Divergence Theorem:

 Ω : simple solid region

S:
bouldary surface of Ω with positive outward orientation.

V = (P, Q, R): vector field with P_x, Q_y, R_z continuous on an open region that contains Ω .

Then we have

$$\iiint_{\Omega} V dV = \iint_{S} V \cdot dS$$
$$\therefore \iint_{S_1 \cup S_2} V \cdot dS = \frac{5\pi}{6}$$

Note:

1. Ω , 1point

2. P_x, Q_y, R_z , 1point

3. $\iiint_{\Omega} V dV = \iint_{S} V \cdot dS$, 1point

4. $\iint_{S_1 \cup S_2} V \cdot dS = \frac{5\pi}{6}$, 1point

Solution 5(c).

Method 1: Direct calculation

$$r(u, v) = (u \cos v, u \sin v, 1 - u^{2}), \quad 0 \le u \le 1, 0 \le v \le 2\pi$$

$$r_{u} = (\cos v, \sin v, -2u)$$

$$r_{v} = (-u \sin v, u \cos v, 0)$$

$$r_{u} \times r_{v} = (2u^{2} \cos v, 2u^{2} \sin v, u)$$

$$V \cdot r_{u} \times r_{v} = u - u^{3}$$

$$\therefore \iint_{S_{2}} V \cdot dS = \int_{0}^{2\pi} \int_{0}^{1} u - u^{3} du dv = \frac{\pi}{2}$$

Method 2

Let $S_3 = \{(x, y, z) | x^2 + y^2 \le 1, z = 0\}$. Then $V \cdot n = 0$ on S_3 where n = -k which implies

$$\iint_{S_3} V \cdot dS = 0$$

This leads to

$$\therefore \iint_{S_2} V \cdot dS = \iiint_{\Omega_2} V dV - \iint_{S_3} V \cdot dS = \frac{\pi}{2}$$

where volume of region 2 has been calculated in part (a).

Note: $\iint_{S_2} V \cdot dS = \iiint_{\Omega_2} V dV$ is WRONG.

Method 3

$$\iint_{S_2} V \cdot dS = \iiint_{\Omega} V dV - \iint_{S_1} V \cdot dS$$
$$= \frac{5\pi}{6} - \frac{\pi}{3}$$
$$= \frac{\pi}{2}$$

where the surface integral of S_1 is as follows:

$$r(u,v) = (u\cos v, u\sin v, -1 + u), \quad 0 \le u \le 1, 0 \le v \le 2\pi$$

$$r_u = (\cos v, \sin v, 1)$$

$$r_v = (-u\sin v, u\cos v, 0)$$

$$r_v \times r_u = (u\cos v, u\sin v, -u)$$

$$V \cdot r_u \times r_v = u - u^2$$

$$\therefore \iint_{S_2} V \cdot dS = \int_0^{2\pi} \int_0^1 u - u^2 du dv = \frac{\pi}{3}$$

Note: Be careful of the sign of the normal

6. (12%) Evaluate $\oint_C (x^2y^2 + y)dx - (2xy^3 - 3x)dy$, where C is described by the polar equation $r = 1 - \cos\theta$ oriented counterclockwise.

Solution:

Let $D = \{0 \le r \le 1 - \cos \theta, 0 \le \theta \le 2\pi\}$ be the region bound by the curve C. Apply Green's Theorem,

$$\oint_C (x^2 y^2 + y) dx - (2xy^3 - 3x) dy = \iint_D (-2y^3 + 3) - (2x^2 y + 1) dA$$

$$= \iint_D (2 - 2x^2 y - 2y^3) dA. \qquad (6 \text{ points})$$

Use polar coordinate $x = r \cos \theta$, $y = r \sin \theta$,

$$\iint_{D} (2 - 2x^{2}y - 2y^{3}) dA = \int_{0}^{2\pi} (2 - 2r^{3} \sin \theta) r dr d\theta \qquad (5 \text{ points})$$

$$= \int_{0}^{2\pi} \left(r^{2} - \frac{2}{5} r^{5} \sin \theta \Big|_{r=0}^{r=1-\cos \theta} \right) d\theta$$

$$= \int_{0}^{2\pi} (1 - \cos \theta)^{2} - \frac{2}{5} \sin \theta (1 - \cos \theta)^{5} d\theta$$

$$= 2\pi + 0 + \frac{1}{2} \cdot 2\pi - \left[\frac{2}{30} (1 - \cos \theta)^{6} \right]_{\theta=0}^{\theta=2\pi} = 3\pi. \qquad (1 \text{ points})$$

7. (12%) Find the area of the sphere $x^2 + y^2 + z^2 = 4$ lying inside the cylinder $(x-1)^2 + y^2 = 1$.

Solution:

The area

$$= 2 \int \int_{(x-1)^2 + y^2 \le 1} \sqrt{1 + z_x^2 + z_y^2} dA$$
 [3 points]

$$(z = \sqrt{4 - x^2 - y^2}, z_x = \frac{-x}{\sqrt{4 - x^2 - y^2}}, z_y = \frac{-y}{\sqrt{4 - x^2 - y^2}})$$
 [1 points]

$$= 2 \int \int_{(x-1)^2 + y^2 \le 1} \frac{2}{\sqrt{4 - x^2 - y^2}} dA$$
 [1 points]

(Use the polar coordinate to calculate)

$$= 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{2\cos\theta} \frac{2}{\sqrt{4 - r^2}} r dr d\theta \qquad [3 \text{ points}]$$

$$= 4 \int_{0}^{\frac{\pi}{2}} \int_{0}^{2\cos\theta} (4 - r^2)^{-\frac{1}{2}} dr^2 d\theta \qquad [1 \text{ points}]$$

$$= 8 \int_{0}^{\frac{\pi}{2}} - (4 - r^2)^{\frac{1}{2}} \Big|_{r=0}^{r=2\cos\theta} d\theta \qquad [1 \text{ points}]$$

$$= 8 \int_{0}^{\frac{\pi}{2}} 2 - 2\sin\theta d\theta \qquad [1 \text{ points}]$$

$$= 8(\pi - 2) \qquad [1 \text{ points}]$$

8. (14%) Compute $\iint_S \text{curl} \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F} = e^{xz}\mathbf{i} + (x^2 + z^2)\mathbf{j} + (y + \cos z)\mathbf{k}$ and where $S = \left\{ (x, y, z) \middle| \frac{x^2}{4} + \frac{y^2}{9} + z^2 = 1 \text{ and } x + 2z \ge 0 \right\}$ oriented so that the boundary is counterclockwise when viewed from above.

Solution:

Method 1:

$$curl F = \nabla \times F = \langle 1 - 2z, xe^{xz}, 2x \rangle$$
 (3 pts)

Let T be the intersection of the ellipsoid with the plane x + 2z = 0. Note that the boundary of S and T are the same. On the plane x + 2z = 0 which is $z = -\frac{1}{2}x$.

Parametrize T by $\gamma(x,y)=(x,y,\frac{-x}{2})$ with the condition $\frac{x^2}{2}+\frac{y^2}{9}\leq 1$ $(\frac{x^2}{4}+\frac{y^2}{9}+z^2\leq 1)$.

 $\gamma_x = (1, 0, \frac{-1}{2}), \gamma_y = (\frac{1}{2}, 0, 1) \Rightarrow \gamma_x \times \gamma_y = (\frac{1}{2}, 0, 1)$ (3 pts)

Let D be the projection of T onto x - y plane.

Now, by Stoke's Theorem

$$\begin{split} \int \int_{S} curl F \cdot dS &= \int \int_{T} curl F \cdot dS \\ &= \int \int_{D} \langle 1+x, xe^{-\frac{1}{2}x^{2}}, 2x \rangle \cdot (\frac{1}{2}, 0, 1) dx dy \\ &= \int \int_{\frac{x^{2}}{2} + \frac{y^{2}}{2} \le 1} \frac{1}{2} + \frac{5}{2} x dx dy \quad (6 \text{ pts}) \end{split}$$

By symmetry, $\int \int_D \frac{5}{2} x dx dy = 0$. So

$$\int \int_{\frac{x^2}{2} + \frac{y^2}{2} \le 1} \frac{1}{2} + \frac{5}{2} x dx dy = \frac{1}{2} Area(D) = \frac{1}{2} \cdot \pi \cdot \sqrt{2} \cdot 3 = \frac{3\sqrt{2}}{2} \pi \quad (2 \text{ pts})$$

Thus $\int \int_{S} curl F \cdot dS = \frac{3\sqrt{2}}{2}\pi$.

Method 2:

We have $z = -\frac{x}{2}$ and $\frac{x^2}{2} + \frac{y^2}{9} + z^2 = 1$ and x + 2z = 0. We have $z = -\frac{x}{2}$ and $\frac{x^2}{2} + \frac{y^2}{9} = 1$. So we can parametrize C as

$$\gamma(\theta) = (\sqrt{2}\cos(\theta), 3\sin(\theta), -\frac{\sqrt{2}\cos(\theta)}{2}), 0 \le \theta \le 2\pi \ (3 \text{ pts})$$

On C , we have

$$F = \langle e^{-\cos^2(\theta)}, \frac{5}{2}\cos^2(\theta), 3\sin(\theta) + \cos(-\frac{\sqrt{2}\cos(\theta)}{2}) \rangle \quad (1 \text{ pt})$$

$$\gamma'(\theta) = \langle -\sqrt{2}\sin(\theta), 3\cos(\theta), \frac{\sqrt{2}\sin(\theta)}{2} \rangle \quad (1 \text{ pt})$$

$$\Rightarrow F \cdot \gamma'(\theta) = -\sqrt{2}\sin(\theta)e^{-\cos^2(\theta)} + \frac{15}{2}\cos^3(\theta) + \frac{3\sqrt{2}\sin^2(\theta)}{2} + \frac{\sqrt{2}\sin(\theta)\cos(-\frac{\sqrt{2}\cos(\theta)}{2})}{2}$$

Then

$$\int F \cdot dr = \int_0^{2\pi} \left(-\sqrt{2}\sin(\theta)e^{-\cos^2(\theta)} + \frac{15}{2}\cos^3(\theta) + \frac{3\sqrt{2}\sin^2(\theta)}{2} + \frac{\sqrt{2}\sin(\theta)\cos(-\frac{\sqrt{2}\cos(\theta)}{2})}{2} \right) d\theta$$
 (3 pts)

Note that
$$f(\theta) = -\sqrt{2}\sin(\theta)e^{-\cos^2(\theta)} + \frac{\sqrt{2}\sin(\theta)\cos(-\frac{\sqrt{2}\cos(\theta)}{2})}{2}$$
 is an odd function.
Thus $\int_0^{2\pi} f(\theta)d\theta = \int_{-\pi}^{\pi} f(\theta)d\theta = 0$.

Thus
$$\int_0^{2\pi} f(\theta) d\theta = \int_{-\pi}^{\pi} f(\theta) d\theta = 0$$

We also have
$$\int_0^{2\pi} \cos^3(\theta) d\theta = 0$$
.

So
$$\int_C F \cdot dr = \int_0^{2\pi} \frac{3\sqrt{2}\sin^2(\theta)}{2} d\theta = \int_0^{2\pi} \frac{3\sqrt{2}(1-\cos(2\theta))}{4} = \frac{3\sqrt{2}\cdot 2\pi}{4} = \frac{3\sqrt{2}\pi}{2}$$
 (3 pts)

Thus, by Stoke's Theorem
$$\int \int_S curl F \cdot dS = \frac{3\sqrt{2}\pi}{2}$$
 (3 pts).