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1. (10%) Let p ∈ (0, 1). A sequence {xn}∞n=1 is given by

x1 =
√
p and xn+1 =

√
p+ xn, for n ≥ 1.

Determine whether the sequence is convergent or divergent with an argument. If it is convergent, find the limit.

Solution:

• Claim 1: {xn} is bounded (4 points)
Prove that 0 < xn < 2 ∀n ∈ N:
Base case: 0 < x1 =

√
p <

√
1 < 2.

Assume that 0 < xk < 2 for k ≥ 1, we have 0 < xk+1 =
√
p+ xk <

√
1 + 2 < 2, thus the claim is proved by

mathematical induction.
• Claim 2: {xn} is increasing (4 points)

Base case: x2 =
√
p+ x1 =

√

p+
√
p >

√
p = x1.

Assume that xk > xk−1 for k ≥ 2, we have xk+1 =
√
p+ xk >

√

p+ xk−1 = xk, thus the claim is proved by
mathematical induction.
By Claim 1 and 2, {xn} is monotonic (increasing) and bounded (above), thus it converges by the Monotonic
Sequence Theorem.
• Find the limit: (2 points)
Since the sequence converges, assume that lim

n→∞

xn = L, then

lim
n→∞

xn+1 = lim
n→∞

√
p+ xn

⇒ L =
√

p+ L
⇒ L2 − L− p = 0

⇒ L =
1±√

1 + 4p

2
, take L =

1 +
√
1 + 4p

2
since 0 < L < 2.
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2. (12%)

(a) (5%) Find the values of p for which the series

∞
∑

n=1

n

(1 + n3)p
is convergent.

(b) (7%) Determine whether the series

∞
∑

n=1

(−1)n tan−1 n

n
is absolutely convergent, conditionally convergent, or

divergent.

Solution:

(a) (5%)
(method 1)

Let bn =
n

n3p
=

1

n3p−1
. an, bn > 0 for all n > 0. For all p ∈ R, we have

lim
n→∞

an
bn

= lim
n→∞

n
(1+n3)p

n
n3p

= lim
n→∞

(
n3

1 + n3
)p = lim

n→∞

(
1

1
n3 + 1

)p = 1 (3%)

so both series

∞
∑

n=1

an and

∞
∑

n=1

bn are convergent or divergent (1%) by the Limit Comparison Test. Since

∞
∑

n=1

1

n3p−1
is convergent if and only if 3p− 1 > 1, which implies p >

2

3
, we know that

∞
∑

n=1

an is convergent

if and only if p >
2

3
. (1%)

(method 2)

(1). p ≤ 0: lim
n→∞

n

(1 + n3)p
= ∞, so it is divergent by the Limit Divergence Test. (1%)

(2). 0 < p ≤ 2

3
: 0 <

n

(n3 + n3)
2
3

≤ n

(n3 + n3)p
≤ n

(1 + n3)p
for all n > 0. By Comparison Test,

∞
∑

n=1

n

(n3 + n3)
2
3

=

∞
∑

n=1

2−
2
3
1

n
is divergent, so

∞
∑

n=1

n

(1 + n3)p
is also divergent when 0 < p ≤ 2

3
. (2%)

(3). p >
2

3
: 0 <

n

(1 + n3)p
≤ 1

n3p−1
for all n > 0. By Comparison Test,

∞
∑

n=1

1

n3p−1
is convergent when

p >
2

3
,

∞
∑

n=1

n

(1 + n3)p
is also convergent when p >

2

3
. (2%)

By (1)(2)(3),

∞
∑

n=1

n

(1 + n3)p
is convergent if and only if when p >

2

3
.

(b) (7%)

First, we show that

∞
∑

n=1

(−1)n tan−1 n

n
is NOT absolutelt convergent.

Let an =
tan−1 n

n
, and bn =

1

n
. Then lim

n→∞

an
bn

= lim
n→∞

tan−1 n =
π

2
> 0.

By limit comparison test, we know

∞
∑

n=1

∣

∣

∣

∣

(−1)n tan−1 n

n

∣

∣

∣

∣

=

∞
∑

n=1

tan−1 n

n
diverges since

∞
∑

n=1

1

n
diverges. (3%)

Next, we show that

∞
∑

n=1

(−1)n tan−1 n

n
is convergent.

In order to apply the alternating series test, we need to show that the sequence {an} is decreasing and
lim
n→∞

an = 0

(1){an} is decreasing (at least for n ≥ N): (3%)

Let f(x) = tan−1 x for x ∈ [1,∞), then f ′(x) =
x

1+x2 − tan−1 x

x2
, we need to show that f ′(x) < 0:

(method 1):
(

x

1 + x2
− tan−1 x

)

′

=
1− x2

(1 + x2)2
− 1

1 + x2
=

−2x2

(1 + x2)2
≤ 0 and

(

x

1 + x2
− tan−1 x

)

∣

∣

∣

x=0
= 0, so f ′(x) <

0.
(method 2):
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lim
x→∞

x

1 + x2
= 0 and lim

x→∞

tan−1 x =
π

2
,.

So there exsits N ∈ N such that
n

1 + n2
− tan−1 n < 0 for n ≥ N

(2) lim
n→∞

an = 0: (1%)

(method 1):

lim
n→∞

tan−1 n

n
= lim

n→∞

tan−1 n · lim
n→∞

1

n
=

π

2
· 0 = 0

(method 2):

Note that 0 ≤ tan−1 n

n
≤ π/2

n
for n ≥ 1. Since lim

n→∞

π/2

n
= 0, we have lim

n→∞

tan−1 n

n
= 0

So, by alternating series test, we know that

∞
∑

n=1

(−1)n tan−1 n

n
is convergent.

And therefore,

∞
∑

n=1

(−1)n tan−1 n

n
is conditionally convergent.
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3. (12%) A plane curve C is parameterized by r(t) = (cos t+ t sin t, sin t− t cos t), t > 0, as Figure 1.

x

y

Figure 1: The plane curve C.

(a) Compute the unit tangent vector T(t), the unit normal vector N(t), and the curvature κ(t).

(b) Show that all centers of osculating circles, r(t) +
1

κ(t)
N(t), lie on a circle.

Solution:

(a) (10%)
(Method 1)

r′(t) = (− sin t+ sin t+ t cos t, cos t− cos t+ t sin t) = (t cos t, t sin t) (1%), so

T(t) =
r′(t)

|r′(t)| (2%) = (cos t, sin t) (1%).

N(t) =
T′(t)

|T′(t)| (2%) = (− sin t, cos t) (1%).

κ(t) =
|T′(t)|
|r′(t)| (2%) =

1

t
(1%).

(Method 2)
The plane curve can be view as r(t) = (cos t+ t sin t)i + (sin t− t cos t)j+ 0k. Thus, we have

r′(t) = t cos ti+ t sin tj+ 0k

r′′(t) = (cos t− t sin t)i+ (sin t+ t cos t)j+ 0k

r′ × r′′(t) = 0i+ 0j+ t2k (1%)

T(t) =
r′(t)

|r′(t)| (2%) = cos ti+ sin tj+ 0k (1%), so

N(t) =
T′(t)

|T′(t)| (2%) = − sin ti+ cos tj+ 0k (1%).

κ(t) =
|r′ × r′′(t)|
|r′(t)|3 (2%) =

1

t
(1%).

(b) (2%)

r(t) +
1

κ(t)
N(t) = (cos t+ t sin t, sin t− t cos t) + t(− sin t, cos t) = (cos t, sin t).

Thus, all centers of osculating circles lies on a circle. (2%)
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4. (10%) Consider the function

f(x, y) =







x2y

x4 + 2y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0).

(a) Find the limit lim
(x,y)→(0,0)

f(x, y) or explain why the limit does not exist.

(b) Compute the directional derivative Duf(0, 0), where u = (cos θ, sin θ) is any direction.

Solution:

(a) (5 points)
If we evaluate the limit along the curves y = mx2,

lim
(x, y) → (0, 0)

y = mx
2

f(x, y) = lim
x→0

x2 ·mx2

x4 + 2m2x4
=

m

1 + 2m2

which varies as the value of m varies. Thus the limit does not exist.

(b) (5 points in total)
Note that since lim

(x,y)→(0,0)
f does not exist, f is not continuous at (0, 0) and in turn f is not differentiable at

(0, 0). Thus the relation Duf = ∇f · u can NOT be used here.

By definition, when u = 〈cos θ, sin θ〉 (already unit length),

Duf(0, 0) = lim
h→0

f(0 + h cos θ, 0 + h sin θ)− f(0, 0)

h
(2 points)

= lim
h→0

h3 cos2 θ sin θ
h4 cos4 θ+2h2 sin2 θ

− 0

h

= lim
h→0

cos2 θ sin θ

h2 cos4 θ + 2 sin2 θ

=







cos2 θ

2 sin θ
, sin θ 6= 0 (θ 6= nπ, n ∈ Z; 2 points)

0, sin θ = 0 (θ = nπ, n ∈ Z; 1 point)

(Note: if you tempted to use Duf = ∇f · u and calculated fx(0, 0) = 0 and fy(0, 0) = 0 correctly by defi-
nition, 2 points will be credited.)
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5. (10%) A differentiable function f(x, y) has the following properties:

• f(0, 0) = 1.

• Duf(0, 0) = 2, where u =

(

3

5
,
4

5

)

.

• Dvf(0, 0) =
3√
2
, where v =

(

1√
2
,
1√
2

)

.

(a) What is the maximal rate of increase of f(x, y) at (0, 0)?

(b) Use the linearization of f(x, y) at (0, 0) to estimate f(0.07,−0.05).

Solution:

(a) Let ∇f(0, 0) = (a, b)

then we have
3

5
a+

4

5
b = 2 and

1√
2
a+

1√
2
b =

3√
2

⇒ ∇f(0, 0) = (2, 1) (3 pts)

Maximum rate of change = |(2, 1)| =
√
5 (2 pts)

(b) L(x, y) = f(0, 0) + fx(0, 0) · (x− 0) + fy(0, 0) · (y − 0)
= 1 + 2x+ y (4 pts)
L(0.07,−0.05) = 1 + 0.14− 0.05 = 1.09 (1 pts)
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6. (10%) Find the local maximum and minimum values and saddle point(s) of the function

f(x, y) = x3 − y3 + 3x2 + 3y2 − 9x.

Solution:

First, we find all critical points by calculating
⇀

∇f(x, y) = 0.

i.e.,

{

fx = 3x2 + 6x− 9 = 0(2%)

fy = −3y2 + 6y = 0(2%)

Solving the equation, we get four points: P1 = (1, 0), P2 = (1, 2), P3 = (−3, 0), and P4 = (−3, 2).

Next, we compute the Hessian matrix of f : Hess(f) =

(

6x+ 6 0
0 −6y + 6

)

(2%)

At P1, we have D(P1) = 72 > 0, and fxx(P1) = 12 > 0, so P1 is a local minimum with f(1, 0) = −5 (1%)
At P2, we have D(P2) = −72 < 0, so P2 is a saddle point (1%)
At P3, we have D(P3) = −72 < 0, so P2 is a saddle point (1%)
At P4, we have D(P4) = 72 > 0, and fxx(P4) = −12 < 0, so P4 is a local maximum with f(−3, 2) = 31 (1%)
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7. (14%) Viviani’s curve, sometimes also called Viviani’s window, is the intersection of the cylinder (x − 1)2 + y2 = 1
and the sphere x2 + y2 + z2 = 4, as Figure 2.

Figure 2: Viviani’s curve.

(a) Find the tangent line equation of the Viviani’s curve at P (1, 1,
√
2).

(b) Find the points on the Viviani’s curve that are nearest to and farthest from Q(2, 0, 2).

Solution:

(a) Let F1(x, y, z) = (x− 1)2 + y2 − 1 = 0 and F2(x, y, z) = x2 + y2 + z2 − 4 = 0.
We compute

∇F1(x, y, z) = (2(x− 1), 2y, 0) ⇒ ∇F1(1, 1,
√
2)//(0, 1, 0) (1pt)

∇F2(x, y, z) = (2x, 2y, 2z) ⇒ ∇F2(1, 1,
√
2)//(1, 1,

√
2) (1pt)

The directional vector of the tangent line is

(0, 1, 0)× (1, 1,
√
2) = (

√
2, 0,−1). (2pts)

So the tangent line equation is






x(t) = 1 +
√
2t

y(t) = 1

z(t) =
√
2− t

, t ∈ R (1pt)

(b) Consider the Lagrange function L(x, y, z, λ, µ) = (x−2)2+y2+(z−2)2−λ((x−1)2+y2−1)−µ(x2+y2+z2−4).
Then we will find all critical points of L :























Lx = 2(x− 2)− 2λ(x− 1)− 2µx = 0 ⇒ (1− λ− µ)x = 2− λ
Ly = 2y − 2λy − 2µy = 0 ⇒ (1− λ− µ)y = 0
Lz = 2(z − 2)− 2µz = 0 ⇒ z(1− µ) = 2
Lλ = −((x− 1)2 + y2 − 1) = 0 ⇒ (x− 1)2 + y2 = 1
Lµ = −(x2 + y2 + z2 − 4) = 0 ⇒ x2 + y2 + z2 = 4.

(3pts)

(A) If y = 0, then x = 0 or x = 2, and it implies (x, y, z) = (0, 0, 2) and (0, 0,−2). (Remark that (2, 0, 0)

does not satisfies Lz = 0.) The distance will be 2 and 2
√
5, respectively. (2pts)

(B) If λ+µ = 1, then λ = 2, µ = −1, and it gives z = 1 and then x =
3

2
and y = ±

√
3

2
. The distance will

be
√
2. (2pts)

Hence the nearest points are (
3

2
,±

√
3

2
, 1). (1pt) The farthest points is (0.0,−2). (1pt)
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8. (15%) Let f(x) =

ˆ x

−1

1√
t2 + 2t+ 2

dt.

(a) Find the Taylor series for f(x) centered at a = −1. (Hint: Complete the square first.)

(b) Find f (9)(−1) and f (10)(−1).

(c) Write down the 3rd-degree Taylor polynomial T3(x) for f(x) centered at a = −1, and calculate T3

(

−1

2

)

.

Estimate the error

∣

∣

∣

∣

f

(

−1

2

)

− T3

(

−1

2

)
∣

∣

∣

∣

by some estimation theorem.

Solution:

(a) Note that x2 + 2x+ 1 = (x+ 1)2 + 1.

f ′(x) =
1√

x2 + 2x+ 2
=

(

1 + (x+ 1)2
)−

1
2

=
∞
∑

n=0

(− 1
2

n

)

(

(x+ 1)2
)n ∣

∣(x+ 1)2
∣

∣ < 1

=

∞
∑

n=0

(− 1
2

n

)

(x + 1)2n |x+ 1| < 1

f(x) = c0 +

∞
∑

n=0

(− 1
2

n

)

(x+ 1)2n+1

2n+ 1
|x+ 1| < 1

f(−1) = c0 + 0 =

ˆ

−1

−1

1√
t2 + 2t+ 2

dt = 0

Thus c0 = 0 and

f(x) =
∞
∑

n=0

(− 1
2

n

)

(x+ 1)2n+1

2n+ 1
|x+ 1| < 1

It is also OK to write

(− 1
2

n

)

=
(−1)n(2n!)

4n(n!)2

Although not grading, one can find the interval of convergence is [−2, 0]. The proof is at the last part.

(b)

f(x) =

∞
∑

k=0

f (k)(−1)

k!
(x + 1)k =

∞
∑

n=0

(− 1
2

n

)

1

2n+ 1
(x+ 1)2n+1

By comparing the coefficient, we have k = 9 = 2n+ 1, n = 4 and then

f (9)(−1) = 9! ·
(− 1

2

4

)

1

2 · 4 + 1
= 8! ·

−1
2 · −3

2 · −5
2 · −7

2

4 · 3 · 2 · 1 = (1 · 3 · 5 · 7)2 = 11025

and k = 10 = 2n+ 1, n /∈ N thus f (10)(−1) = 0

(c) Take the terms until power 3,

T3(x) = 0 +

(− 1
2

0

)

(x+ 1)1

1
+ 0 +

(− 1
2

1

)

(x+ 1)3

3

= (x + 1)− 1

6
(x + 1)3

T3

(

−1

2

)

=

(

1

2

)

− 1

6

(

1

2

)3

=
23

48

Let R(x) = f(x)− T3(x). We want to find an estimate to

∣

∣

∣

∣

R

(

−1

2

)∣

∣

∣

∣

.

• (Method 1) Use Taylor’s Inequality.

If
∣

∣

∣
f (4)(x)

∣

∣

∣
≤ M for |x+ 1| ≤ 1

2
, then |R3(x)| ≤

M

4!
|x+ 1|4.

Thus

∣

∣

∣

∣

R

(

−1

2

)
∣

∣

∣

∣

=

∣

∣

∣

∣

R3

(

−1

2

)
∣

∣

∣

∣

≤ M

4!

∣

∣

∣

∣

−1

2
+ 1

∣

∣

∣

∣

4

=
M

384
.
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Now we are going to try to find some M satisfies
∣

∣

∣
f (4)(x)

∣

∣

∣
≤ M for ALL |x + 1| < 1

2
. (Not only

x = −1 or −1

2
. There is a remark later.)

f (2)(x) =
−1

2

(

1 + (x+ 1)2
)

−3
2 · 2(x+ 1)

f (3)(x) =
3

4

(

1 + (x+ 1)2
)

−5
2 · 4(x+ 1)2 +

−1

2

(

1 + (x + 1)2
)

−3
2 · 2

f (4)(x) =
−15

8

(

1 + (x+ 1)2
)

−7
2 · 8(x+ 1)3 +

3

4

(

1 + (x+ 1)2
)

−5
2 · (8 + 4)(x+ 1)

=
(

1 + (x + 1)2
)

−7
2
(

−15(x+ 1)3 + 9(x+ 1)
(

1 + (x+ 1)2
))

=
3(x+ 1)

(

3− 2(x+ 1)2
)

√

(1 + (x+ 1)2)
7

Note that 0 ≤ |x+ 1| ≤ 1

2
and

∣

∣

∣
f (4)(x)

∣

∣

∣
≤ 3 · 1

2 · (3 − 2 · 0)
√

(1 + 02)
7

=
9

2

Take M =
9

2
and

∣

∣

∣

∣

R

(

−1

2

)∣

∣

∣

∣

≤ 3

256

• (Method 2) Use Alternating Series Estimation Theorem. Let

bn = (−1)n
(− 1

2

n

)

1

2n+ 1

(

−1

2
+ 1

)2n+1

= cn
1

(2n+ 1)

1

22n+1

Where cn = (−1)n
(− 1

2

n

)

. Then c0 = 1 and cn =
2n− 1

2n
cn−1.

Note that both bn and cn are always positive.
Now (i) cn ≤ cn−1, thus {cn} is decreasing, so does {bn}
(ii) cn ≤ 1, thus 0 ≤ lim

n→∞

bn ≤ lim
n→∞

1

(2n+ 1)

1

22n+1
= 0

Thus
∞
∑

n=0

(−1)nbn is an alternating series. Therefore

∣

∣

∣

∣

R

(

−1

2

)
∣

∣

∣

∣

= |R1| ≤ b2 = (−1)2
(− 1

2

2

)

· 1
5
· 1

25
=

3

1280

This method is simpler and 5 times accurate then the previous one.

Grading

(a) Total 5 pts.
(1 pt) Find f ′(x).
(2 pts) Find the Taylor series of f ′(x).
(1 pt) Write out the Taylor series of f(x).
(1 pt) For integrate coefficient.
Calculating f(x) = sinh−1(x + 1) does not count. Those ONLY calculating the integral without a series
get (only) 2 pts.
Radius of convergence does not count, but costs 1 pt if answered incorrect.
Interval of convergence does not count, even answered incorrect.

(b) Total 5 pts.
(3 pts) Find f (9)(−1) = c9 · 9!, n = 4. Missing 9! costs 2 pts.
(2 pts) Find f (10)(−1).

(c) Total 5 pts.
(1 pt) Find T3(x).
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(1 pt) Find T3

(

−1

2

)

(1 pt) State out which estimation theorem is used.
(1 pt) State or use the theorem correctly.

(1 pt) Find an suitable upper bound for |f(−1

2
)− T3(−

1

2
)|

For Method 1, writing M without a way how to find it costs 1 pt.
For Method 2, not fully checking the criterion of alternating costs 1 pt.
Accurate answer is not available. Use a rational number to estimate.

Remarks

• Cm
n is not good when m is not a nonnegative integer. Use

(

m

n

)

instead.

• The interval of convergence in (a) can be found as following:

Let (−1)ncn =

(− 1
2

n

)

, cn = (−1)n
(− 1

2

n

)

, then

1. {cn} is nonnegative.

2. c0 = 1 and
cn

cn−1
=

2n− 1

2n
.

3. We now prove cn ≤ 1√
n+ 1

.

Clearly case n = 0 holds. Now n ≥ 1, if cn−1 ≤ 1√
n
, then

cn =
2n− 1

2n
cn−1 ≤ 2n− 1

2n

1√
n
=

√

(2n− 1)2(n+ 1)
√

(2n)2(n)

1√
n+ 1

≤ 1√
n+ 1

Since (2n− 1)2(n+ 1) = 4n3 − 3n+ 1 ≤ 4n3 = (2n2)(n).

Therefore, both |x+ 1| = 1 or −1 cases, we have

∞
∑

n=0

∣

∣

∣

∣

(− 1
2

n

)

1

2n+ 1

∣

∣

∣

∣

≤
∞
∑

n=0

1√
n+ 1

1

2n+ 1
≤

∞
∑

n=0

1

2n
√
n

Which is absolute convergent by p-series test.
Then the interval of convergence is [−2, 0].

The reason choosing
1√
n+ 1

will be clear if one knows Stirling’s Formula, which gives an approximation of the

factorial n!.

• In Method 1 in (c), Taylor’s inequality needs |f (4)(x)| ≤ M for all |x + 1| ≤ 1

2
. Actually, if |f (4)(

−1

2
)| is the

global maximum, then all will be fine. Unfortunately, that is not the case.

Figure 3: Both x = −1/2 (orange) and x = −3/2 (green) not global extreme.

• In (c), When estimating error of f(x), use ”≤” but not ”≈”. The latter one is really dangerous, since the error
of f(x) may be even smaller then the error of approximating, leading to an inaccurate result.
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9. (12%) Consider the power series f(x) =

∞
∑

n=2

1

n(n− 1)3n
(x − 2)n.

(a) Find the interval of convergence for f(x).

(b) Write down the power series representation for
d

dx
f(x) and find its sum in the interior of the interval of conver-

gence.

Solution:

(a) By ratio test lim
n→∞

|an+1

an
| = |x− 2|

3
< 1 if −1 < x < 5 (4 pts)

At x = 5,

∞
∑

n=2

1

n(n− 1)
converge. (1 pts)

At x = −1,
∞
∑

n=2

(−1)n

n(n− 1)
converge. (1 pts)

Thus interval of convergence is −1 ≤ x ≤ 5

(b)
d

dx
(f(x)) =

1

3

∞
∑

n=2

1

(n− 1)
(
x− 2

3
)n−1 (2 pts)

Now, compute g(x) =
∞
∑

n=2

1

(n− 1)
(x)n−1 then

d

dx
f(x) =

1

3
g(

x− 2

3
)

First,
1

1− x
= 1 + x+ x2 + · · ·

⇒ − ln(1 − x) = x+
x2

2
+

x3

3
+ · · · RHS is g(x)

Thus
d

dx
(f(x)) = −1

3
ln(

5 − x

3
) (4 pts)
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