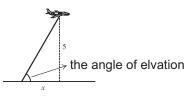
1051微甲06-10班期中考解答和評分標準

1. (10%) A plane flies horizontally at an altitude of 5 km and passes directly over a tracking telescope on the ground. When the angle of elevation is $\pi/3$, this angle is decreasing at a rate of $\pi/6$ rad/min. How fast is the plane travelling at that time?



Solution:

Let the angle of elevation be $\theta(t)$, and the horizontal displacement of the plane from the tracking telescope be x(t), then from the figure we have

$$\tan \theta(t) = \frac{5}{x(t)}, \text{ or equivalently, } x(t) = 5 \cot \theta(t) \quad [3 \text{ points}]$$

And, we are given that

$$\left. \frac{d}{dt} \theta(t) \right|_{\theta = \frac{\pi}{3}} = -\frac{\pi}{6} \qquad [1 \text{ points}]$$

Therefore, the velocity of the plane is

$$\frac{dx}{dt}\Big|_{\theta=\frac{\pi}{3}} = 5 \cdot \left(-\csc^2\theta\right) \cdot \frac{d\theta}{dt}\Big|_{\theta=\frac{\pi}{3}} \qquad [4 \text{ points}]$$
$$= 5 \cdot \left(-\left(\frac{2}{\sqrt{3}}\right)^2\right) \cdot \left(-\frac{\pi}{6}\right)$$
$$= \frac{10\pi}{9} (km/min.) \qquad [2 \text{ points}]$$

(The other way)

$$\tan \theta(t) = \frac{5}{x(t)} \quad [3 \text{ points}]$$

$$\Rightarrow \sec^2 \theta \frac{d\theta}{dt} = -\frac{5}{x^2} \frac{dx}{dt} \quad [4 \text{ points}]$$

$$\Rightarrow 2^2 \left(-\frac{\pi}{6}\right) = -\frac{5}{\left(\frac{5}{\sqrt{3}}\right)^2} \frac{dx}{dt} \bigg|_{\theta = \frac{\pi}{3}} \quad [1 \text{ points}]$$

$$\Rightarrow \frac{dx}{dt} \bigg|_{\theta = \frac{\pi}{3}} = \frac{10\pi}{9} \left(\frac{km}{min.} \right) \quad [2 \text{ points}]$$

[Grading Criterion] Write down the equation correctly. [3 points] Use the given conditions correctly. [1 points] Differentiate the equation correctly. [4 points] Calculate the velocity correctly. [2 points] 2. (a) (6%) Find the linear approximation of $\tan^{-1} x$ at the point p. (b) (4%) Use (a) to approximate $\tan^{-1} \frac{3}{5}$ with $p = \tan\left(\frac{\pi}{6}\right)$.

Solution:

(a) The linear approximation L(x) of a function f(x) at a point p is given by

$$f(x) \approx L(x) = f(p) + f'(p)(x-p).$$

Let $f(x) = \tan^{-1} x$, then we have $f'(x) = \frac{1}{1+x^2}$. Therefore, at the point p,

$$\tan^{-1} x \approx \tan^{-1} p + \frac{1}{1+p^2} (x-p).$$
 [6 points]

(b) From part (a), we have

$$\tan^{-1} \frac{3}{5} \approx \tan^{-1} p + \frac{1}{1+p^2} \left(\frac{3}{5} - p\right)$$
$$= \tan^{-1} \left(\tan\left(\frac{\pi}{6}\right)\right) + \frac{1}{1+\tan^2\left(\frac{\pi}{6}\right)} \left(\frac{3}{5} - \tan\left(\frac{\pi}{6}\right)\right)$$
$$= \frac{\pi}{6} + \frac{3}{4} \left(\frac{3}{5} - \frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} + \frac{9}{20} - \frac{\sqrt{3}}{4} \qquad [4 \text{ points}]$$

[Grading Criterion]

Part (a) Correct answer will get 6 points, otherwise, no point.

Part (b) Correct answer will get 4 points. If the steps are correct but $\tan(\frac{\pi}{6})$ is evaluated wrongly, 2 points.

3. Find the following limits.

(a) (4%) $\lim_{x \to 0^+} \sqrt{x} e^{\sin(\pi/x)}$

Solution:

(a) $-1 \leq \sin\left(\frac{\pi}{r}\right) \leq 1$ $\frac{1}{e} \le e^{\sin\left(\frac{\pi}{x}\right)} \le e$ $\frac{\sqrt{x}}{e} \le \sqrt{x} e^{\sin\left(\frac{\pi}{x}\right)} \le \sqrt{x} e^{-\frac{\pi}{2}}$ $\lim_{x \to 0^+} \frac{\sqrt{x}}{e} = 0 = \lim_{x \to 0^+} \sqrt{x}e$ By squeeze theorem $\lim_{x \to 0^+} \sqrt{x} e^{\sin\left(\frac{\pi}{x}\right)} = 0$ (b) $\lim_{x \to 0} \frac{\sqrt[3]{x-1} + \sqrt[3]{x+1}}{x}$ $= \lim_{x \to 0} \frac{(x-1) + (x+1)}{x(\sqrt[3]{x-1}^2 - \sqrt[3]{x-1} \sqrt[3]{x+1} + \sqrt[3]{x+1}^2)}$ $=\lim_{x\to 0} \frac{2}{\sqrt[3]{x-1}^2 - \sqrt[3]{x-1} \sqrt[3]{x+1} + \sqrt[3]{x+1}^2}}$ $=\frac{2}{3}$ (c) $\lim_{x\to 0} (\cos(x^2))^{\frac{1}{x^4}}$ $= e^{\lim_{x\to 0} \frac{\ln(\cos(x^2))}{x^4}} \frac{0}{0}$, use 羅凶達 $= e^{\lim_{x \to 0} \frac{-\sin(x^2)}{\cos(x^2)} 2x}}{\frac{1}{4x^3}}$ $= e^{\lim_{x \to 0} \frac{-\sin(x^2)}{x^2} \frac{1}{2\cos(x^2)}}$ $=e^{\frac{-1}{2}}$ 第三題評分標準 (a) 出現 $\lim_{x\to 0^+} e^{\sin(\frac{\pi}{x})}$ 但沒有發現(說明)此極限不存在,其餘概念正確 -1 出現 $\lim_{x\to 0^+} \sqrt{x} e^{\sin(\frac{\pi}{x})} = \lim_{x\to 0^+} \sqrt{x} * \lim_{x\to 0^+} e^{\sin(\frac{\pi}{x})}$ 並且沒有用到夾擠的概念,其餘概念正確 -2 $\operatorname{Hlim}_{x \to 0^+} \frac{\sin(\frac{\pi}{x})}{(\frac{\pi}{x})}$ 看成無限大並用羅必達 -2~-4(視後面算式的合理以及完整性而定) 小錯誤 -1 (b) 計算錯誤 -1 上下同乘以錯誤的數字(因子)-1~-3(視錯誤因子對後面算式的影響而定) (c) 不影響後面算式前提下的計算錯誤 -1 微分計算錯誤 -2 有取 ln 至少有1分 沒有把取 ln 的結果代回題目要求的式子 -1 \mathbf{PS} ${f \Xi}({
m b})({
m c})$ 兩題之中至少用了一次羅必達, 但 $({
m b})({
m c})$ 兩題都沒有檢查是否滿足 $rac{0}{
m o}$ 的情況,則共計扣1分

4. Suppose that $f(x) = \begin{cases} \sin x + b \ln(x+1) + c \text{ if } x \ge 0 \\ e^{x^2} \text{ if } x < 0 \end{cases}$

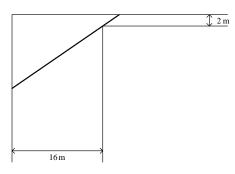
- (a) (4%) Find b, c such that f(x) is continuous.
- (b) (4%) Find b, c such that f(x) is differentiable.
- (c) (4%) For b, c in (b), is f'(x) continuous?

Solution:

(a) $\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} [\sin x + b \ln (x + 1) + c] = c \text{ (1pt)}$ $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} e^{x^{2}} = 1 \text{ (1pt)}$ f(0) = cHence, f(x) is continuous at $x = 0 \Leftrightarrow c = 1, b \in \mathbb{R}$. (2pt) (b) $\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{\sin x + b \ln (x + 1) + 1 - 1}{x - 0}$ $= \lim_{x \to 0^{+}} \frac{\sin x + b \ln (x + 1)}{x}$ $= \lim_{x \to 0^{+}} \left(\frac{\sin x}{x} + b \frac{\ln (x + 1)}{x}\right) = 1 + b \text{ (1pt)}$ $\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{e^{x^{2}} - 1}{x - 0} \left(\frac{0}{0}\right) \overset{\text{L'H}}{=} \lim_{x \to 0^{-}} \frac{2xe^{x^{2}}}{1} = 0 \text{ (1pt)}$ Hence, f(x) is differentiable at $x = 0 \Leftrightarrow c = 1, b = -1$ (2pt) (c) For b = -1 and c = 1, f(x) is differentiable everywhere, then $f'(x) = \begin{cases} \cos x - \frac{1}{x + 1}, & x \ge 0 \\ 2xe^{x^{2}}, & x < 0 \end{cases}$ $\lim_{x \to 0^{+}} f'(x) = \lim_{x \to 0^{+}} [\cos x - \frac{1}{x + 1}] = 0 \text{ (1pt)}$ $\lim_{x \to 0^{-}} f'(x) = \lim_{x \to 0^{+}} 2xe^{x^{2}} = 0 \text{ (1pt)}, \text{ and } f'(0) = 0 \text{ (1pt)}$

Hence, f'(x) is continuous. (1pt)

5. (15%) A steel pipe is carried down a hallway 16 meter wide. At the end of the hall there is a right angled turn into a narrower hallway 2 meter wide. What is the length of the longest pipe that can be carried horizontally around the corner?



Solution:

Let the width of aisle is $l(\theta)$ where $\theta \in (0, \pi)$ is the angle between the pipe and the horizontal line. Therefore, we can have $l(\theta) = \frac{16}{\cos(\theta)} + \frac{2}{\sin(\theta)}$. We need to find the minimum of the $l(\theta)$; in this way we can find the length of the longest pipe.

 $l'(\theta) = 16 \sec(\theta) \tan(\theta) - 2 \csc(\theta) \cot(\theta)$

To find the minimum of the $l(\theta)$, we should solve $l'(\theta) = 0$.

 $l'(\theta) = 16\sec(\theta)\tan(\theta) - 2\csc(\theta)\cot(\theta) = 16\frac{\sin\theta}{\cos^2\theta} - 2\frac{\cos\theta}{\sin^2\theta} = \frac{16\sin^3\theta - 2\cos^3\theta}{\sin^2\theta\cos^2\theta} = 0$

 $\Rightarrow \ 16\sin^3\theta - 2\cos^3\theta = 0 \Rightarrow \tan^3\theta = \frac{1}{8} \Rightarrow \tan\theta = \frac{1}{2} \Rightarrow \theta = \tan^{-1}\frac{1}{2}(10 \text{ points})$

We can check that $l''(\tan^{-1}\frac{1}{2}) > 0$ (1 point). Therefore, the minimum of the $l(\theta)$ happens at $\theta = \tan^{-1}\frac{1}{2}$ and we can compute the answer $l(\tan^{-1}\frac{1}{2}) = 10\sqrt{5}.(4 \text{ points})$

6. (17%) Let $h(x) = x^{1/3}(x-4)$. Then $h'(x) = \frac{4(x-1)}{3x^{2/3}}$ and $h''(x) = \frac{4(x+2)}{9x^{5/3}}$. Answer the following questions by filling each blank below. Show your work (computations and reasoning) in the space following. Put <u>None</u> in the blank if the item asked does <u>not</u> exist, each blank is worth 2 pts.

(a) The function is increasing on the interval(s) ______ and decreasing on the interval(s)

	The local maximal point(s) $(x, y) = $ and
	The local minimal point(s) $(x, y) = $
(b)	The function is concave upward on the interval(s) and concave downward on the
	interval(s) The inflection point(s) $(x, y) =$
(c)	Sketch the graph of the function. Indicate, if any, where it is increasing/decreasing, where it concaves up ward/downward, all relative maxima/minima, inflection points and asymptotic line(s) (if any). (3%)
S	olution:
(8	a)
	1. (2pt) $(1,\infty)$
	2. (2pt) $(-\infty, 1)$
	3. (2pt) None
	4. (2pt) (1,-3)
(ł	o)
	1. (2pt) $(-\infty, -2), (0, \infty) / (-\infty, -2) \cup (0, \infty)$
	2. (2pt) (-2,0)
	3. (2pt) $(-2, 6\sqrt[3]{2}), (0, 0)$
(0	2)
	1. (1pt) Mark all 4 points to get this point: $(-2, 6\sqrt[3]{2}), (0, 0), (-1, 3), (0, 4)$
	2. (1pt) Draw monotonicity and concavity correct and do not draw any asymptote to get this point.
	3. (1pt) Draw something like a curve to get this point.
_	
	-1

評分標準:

- You do not lose any points if you replace any open end by closed end, e.g. [-2,0]. But if you interchange the two ends, e.g. (0,-2), you lose 1pt for each blank.
- Misplacing (a) $1. \leftrightarrow 2$. (a) $3. \leftrightarrow 4$. (b) $1. \leftrightarrow 2$. costs 2pt each pair.
- In (a) 2. $(-\infty, 0), (0, 1)$ is not correct, but won't lose points.
- If (a) 4. correct and (a) 3. empty, you get 1pt for (a) 3.
- In (b) 3. missing (0, 0) costs 1pt.
- If you think the domain of x^{1/3} is [0,∞), use the following grading:
 (a) 1. (2pt) (1,∞) 2. (1pt) (0,1) 3. (1pt) (0,0) or None 4. (2pt) (1,-3)
 (b) 1. (1pt) (0,∞) 2. (1pt) None 3. (1pt) None (c) (3pt) right half graph. You get at most 12pt in this case.
- In (c), if you write x = 0 a vertical asymptote (it is actually a vertical tangent line), you lose the point of 2.
- Note that $7 < 6\sqrt[3]{2} < 8$. Since we have grids for graphing, draw the point $(-2, 6\sqrt[3]{2})$ between 7 and 8 or you lose the point of 1.

Remarks

- $-\infty$ and ∞ is not a real number. We don't use closed end like $[1,\infty]$ in real number system.
- Use $(-\infty, -2) \cup (0, \infty)$. $(-\infty, -2) \cap (0, \infty) = \emptyset$
- A function f is (strictly) decreasing on (a, b) if: For any $x_1, x_2 \in (a, b), x_1 < x_2 \implies f(x_1) > f(x_2)$. We use first derivative just for test if f is differentiable. When f is not differentiable, you should check the original definition. Since (0, 0) exists, the interval $(-\infty, 1)$ has this property. Basically we write the largest interval as solution. Thanks to professor for not losing points.
- Similarly, since (0,0) exists, it is a inflection point, although h''(0) does not exist.
- In real calculus, we define $x^{1/3}$ to be the inverse function of x^3 . Then the domain of $x^{1/3}$ is the whole real number line, while x^b is generally well defined only on x > 0 given any real number b. (But x^1 is good on $(-\infty, \infty)$, right?)
- x = 0 is a vertical tangent line at (0,0), so the curve should tangent to it. This do not cost any points since in Textbook we do not mention this.

7. Let the curve $x^2y^2 + 2xy = 8$ be given.

- (a) (4%) Express y' in terms of x and y.
- (b) (4%) Find points on the curve with y = 2 and the tangent lines at these points.
- (c) (4%) Find y'' at the points in (b).

Solution:

(a) (4 points) Do implicit derivative on variable x,

$$\begin{cases} (2xy^2 + 2x^2yy') + (2y + 2xy') = 0\\ (x^2y + x)y' = -y - xy^2 \end{cases}$$

(3 points), each mistakes will minus 1 point

$$y' = -\frac{xy^2 + y}{x^2y + x} = -\frac{y(xy+1)}{x(xy+1)} = -\frac{y}{x}$$
 (1 point)

(b) (4 points) Find points on the curve with y = 2 $x^2 \cdot 4 + 4x = 8$, so we have $x^2 + x - 2 = 0 = (x + 2)(x - 1)$ Hence the intersection points are

 $P_1 = (-2, 2)(1 \text{ point}), P_2 = (1, 2)(1 \text{ point})$

$$m_1 = -\frac{(-2) \cdot 4 + 2}{(-2)^2 \cdot 2 + (-2)} = \frac{6}{6} = 1 \quad (1 \text{ point})$$
$$m_2 = -\frac{4+2}{2+1} = -2 \quad (1 \text{ point})$$

Tangent line at P_1 : y - 2 = x + 2Tangent line at P_2 : y - 2 = -2(x - 1)

(c) (4 points) From (1), we have

$$y'' = -\frac{y'x - y}{x^2} = \frac{2y}{x^2}$$

At P_1 , $y'' = \frac{2 \cdot 2}{(-2)^2} = 1$ (2 points) At P_2 , $y'' = \frac{4}{1} = 4$ (2 points)

- 8. Find the derivative of the following functions.
 - (a) (4%) $y = (\tan^{-1} x)^{\sin x}$, x > 0. (b) (4%) $y = \log_{e^x}(\tan x)$, $0 < x < \frac{\pi}{2}$. (c) (4%) $y = \frac{(2x+1)^5(x^2+1)^3}{(3x-2)^6(x^3+1)^4}$, find y'(0).

Solution:

(a)

$$\frac{dy}{dx} = \frac{d}{dx} e^{\sin x \cdot \ln(\tan^{-1} x)} \quad [1 \text{ points}] \\
= (\tan^{-1} x)^{\sin x} (\cos x \cdot \ln(\tan^{-1} x) + \frac{\sin x}{(1 + x^2) \cdot \tan^{-1} x}) \quad [3 \text{ points}] \\
(b)
y = \frac{\ln \tan x}{\ln e^x} = \frac{\ln \tan x}{x} \quad [1 \text{ points}] \\
hence by quotient rule,
$$\frac{dy}{dx} = \frac{x \sec^2 x}{\tan x} - \ln \tan x}{x^2} \quad [3 \text{ points}] \\
(c)
We can write y as
y = (2x + 1)^5 (x^2 + 1)^3 (3x - 2)^{-6} (x^3 + 1)^{-4} \\
hence by product rule,
y' = 10(2x + 1)^4 (x^2 + 1)^3 (3x - 2)^{-6} (x^3 + 1)^{-4} \\
-18(2x + 1)^5 (x^2 + 1)^3 (3x - 2)^{-6} (x^3 + 1)^{-4} \\
-18(2x + 1)^5 (x^2 + 1)^3 (3x - 2)^{-6} (x^3 + 1)^{-4} \\
-18(2x + 1)^5 (x^2 + 1)^3 (3x - 2)^{-6} (x^3 + 1)^{-4} \\
-12x^2 (2x + 1)^5 (x^2 + 1)^3 (3x - 2)^{-6} (x^3 + 1)^{-5} \\
[3 points] \\
y'(0) = 10 \cdot \frac{1}{64} - 18 \cdot (-\frac{1}{128}) = \frac{19}{64} \quad [1 \text{ points}] \\
(The other way)
In y = 5 \ln(2x + 1) + 3 \ln(x^2 + 1) - 6 \ln(3x - 2) + 4 \ln(x^3 + 1) \\
hence,
$$\frac{y'}{y} = \frac{10}{2x + 1} + \frac{6x}{x^2 + 1} - \frac{18}{3x - 2} + \frac{12x^2}{x^3 + 1} \quad [3 \text{ points}] \\
y'(0) = y(0)(10 + 0 + 9 + 0) = \frac{19}{64} \quad [1 \text{ points}] \\
[Grading Criterion] \\
(a)(b)
Simply the functions. [1 points] Differentiate the equation correctly. [3 points]
(c)
Differentiate the equation correctly. [3 points]
(c)$$$$$$