Section 2.5 Continuity

EX.20

Explain why the function is discontinuous at the given number a.

Sketch the graph of the function.

\[f(x) = \begin{cases} \frac{x^2-x}{x^2-1}, & \text{if } x \neq 1 \\ 1, & \text{if } x = 1 \end{cases} \]

\[a = 1 \]

\[\lim_{x \to 1^+} f(x) = \lim_{x \to 1^-} f(x) = \lim_{x \to 1} \frac{x^2-x}{x^2-1} = \lim_{x \to 1} \frac{x}{x+1} = \frac{1}{2} \neq f(1) = 1 \]

\[\therefore \text{ } f(x) \text{ is discontinuous at } x = 1 \]

EX.30

Explain, using Theorems 4, 5, 7, and 9, why the function is continuous at every number in its domain.

State the domain.

\[B(x) = \frac{\tan x}{\sqrt{4-x^2}} \]

\[\therefore \text{ The domain of } \tan x \text{ is } \mathbb{R} \setminus \{2k\pi \pm \frac{\pi}{2} | k \in \mathbb{Z}\} \text{ and the domain of } \frac{1}{\sqrt{4-x^2}} \text{ is the interval } (-2, 2), \]

\[\therefore \text{ the domain of } B(x) \text{ is the intersection of the above two domains, namely, } (-2, 2) \setminus \{-\frac{\pi}{2}, \frac{\pi}{2}\}. \]

(1) \(\tan x \) is continuous in any interval of the form \(\left(\frac{(2k-1)\pi}{2}, \frac{(2k+1)\pi}{2} \right) \) for all \(k \in \mathbb{Z} \).

(2) \(\frac{1}{2} \) is continuous on \(\mathbb{R} \setminus \{0\} \).

(3) \(\sqrt{x} \) is continuous at every \(x \geq 0 \).

(4) polynomial \(4-x^2 \) is continuous at every \(x \in \mathbb{R} \).

By (1), (2), (3), and (4), and using Theorems 4, 5, 7, and 9, \(B(x) \) is continuous at every number in its domain \((-2, 2) \setminus \{-\frac{\pi}{2}, \frac{\pi}{2}\} \).
EX.38

Use continuity to evaluate the limit

$$\lim_{x \to 2} \arctan \left(\frac{x^2 - 4}{3x^2 - 6x} \right)$$

\(< pf >

\lim_{x \to 2} \arctan \left(\frac{x^2 - 4}{3x^2 - 6x} \right) = \arctan \left(\lim_{x \to 2} \frac{(x-2)(x+2)}{3x(x-2)} \right) = \arctan \left(\frac{4}{6} \right) = \arctan \left(\frac{2}{3} \right)$$

EX.42

42. Find the numbers at which \(f \) is discontinuous. At which of these numbers is \(f \) continuous from the right, from the left, or neither? Sketch the graph of \(f \).

\[f(x) = \begin{cases}
 x + 1 & \text{if } x \leq 1 \\
 \frac{1}{x} & \text{if } 1 < x < 3 \\
 \sqrt{x - 3} & \text{if } x \geq 3
\end{cases} \]

\(< pf >

\because (1) \ x + 1 \text{ is continuous everywhere} \\
(2) \frac{1}{x} \text{ is continuous at every } x \neq 0 \\
(3) \sqrt{x - 3} \text{ is continuous at every } x \geq 3 \\
\because \text{we only need to check } x = 1 \land 3 \\
\lim_{x \to 1^+} f(x) = \lim_{x \to 1^-} \frac{1}{x} = 1 \neq \lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} (x + 1) = 2 \\
\lim_{x \to 3^-} f(x) = \lim_{x \to 3^+} \frac{1}{x} = \frac{1}{3} \neq \lim_{x \to 3^+} f(x) = \lim_{x \to 3^-} \sqrt{x - 3} = 0 \\
\Rightarrow f(x) \text{ is discontinuous at } x = 1 \land 3

EX.46

Find the values of \(a \) and \(b \) that make \(f \) continuous everywhere.
\[f(x) = \begin{cases}
\frac{x^2 - 4}{x - 2}, & \text{if } x < 2 \\
ax^2 - bx + 3, & \text{if } 2 \leq x < 3 \\
2x - a + b, & \text{if } x \geq 3
\end{cases} \]

It’s easy to check \(f(x) \) continuous at every \(x \neq 2 \& 3 \)

So we only need to check \(x = 2 \& 3 \)

if \(f(x) \) is continuous at everywhere

then \(\lim_{x \to 2} f(x) = f(2) \& \lim_{x \to 3} f(x) = f(3) \)

\[
\begin{align*}
\lim_{x \to 2} f(x) &= \begin{cases}
\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} ax^2 - bx + 3 = 4a - 2b + 3 \\
\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2^-} \frac{(x-2)(x+2)}{x-2} = 4
\end{cases} \\
\lim_{x \to 3} f(x) &= \begin{cases}
\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} 2x - a + b = 6 - a + b \\
\lim_{x \to 3^-} f(x) = \lim_{x \to 3^-} ax^2 - bx + 3 = 9a - 3b + 3
\end{cases}
\end{align*}
\]

\(\Rightarrow \begin{cases} 4a - 2b + 3 = 4 \\
9a - 3b + 3 = 6 - a + b \end{cases} \Rightarrow \begin{cases} a = \frac{1}{2} \\
b = \frac{1}{2} \end{cases} \)

EX.54

Use the Intermediate Value Theorem to show that there is a root of the given equation in the specified interval.

\[\sin x = x^2 - x, \quad (1, 2) \]

\(\sin x \) and \(x^2 - x \) are both continuous at \((1, 2) \)

Define \(f(x) = \sin x - (x^2 - x) \)

then \(f(1) = \sin 1 - (1 - 1) = \sin 1 > 0 \)

\(f(2) = \sin 2 - (4 - 2) = \sin 2 - 2 < 0 \)

\(\therefore f(1)f(2) < 0 \)

\(\therefore \) By I.V.T there exist a \(c \in (1, 2) \) s.t \(f(c) = 0 \)
EX.64

For what values of x is g continuous

$$g(x) = \begin{cases}
0 & \text{if } x \text{ is rational} \\
x & \text{if } x \text{ is irrational}
\end{cases}.$$

Claim: $g(x)$ is continuous only at $x = 0$.

Given $\varepsilon > 0$, take $\delta = \varepsilon > 0$.

If $0 < |x - 0| < \delta$,

then

$$|g(x) - g(0)| = \begin{cases}
|0 - 0| = 0 < \varepsilon & \text{if } x \text{ is rational} \\
|x - 0| < \delta = \varepsilon & \text{if } x \text{ is irrational}
\end{cases}.$$

$\therefore \lim_{x \to 0} g(x) = g(0)$.

For any $c \neq 0$

(1) If c is irrational,

take $\varepsilon = \frac{|c|}{2} > 0$. For all $\delta > 0$, there exists a rational number x such that $0 < |x - c| < \delta$
(because the rational numbers are dense in the real numbers) and

$$|g(x) - g(c)| = |0 - c| = |c| > \varepsilon.$$

(2) If c is rational and positive,

take $\varepsilon = |c| > 0$. For all $\delta > 0$, there exists an irrational number $x \in (c, c + \delta)$ (because the irrational numbers are dense in the real numbers) and

$$|g(x) - g(c)| = |x - 0| = |x| > |c| = \varepsilon.$$

(3) If c is rational and negative,

take $\varepsilon = |c| > 0$. For all $\delta > 0$, there exists an irrational number $x \in (c - \delta, c)$ (because the irrational numbers are dense in the real numbers) and

$$|g(x) - g(c)| = |x - 0| = |x| > |c| = \varepsilon.$$

By (1), (2), and (3), $\therefore g(x)$ is discontinuous at every $x \neq 0$.
EX.65

Is there a number that is exactly 1 more than its cube?

<pf>
Yes,
Define \(f(x) = x - (1 + x^3) \)
\(f(-1) = -1 \land f(-2) = 5 \)
\(\therefore f(x) \) is continuous at everywhere
\(\therefore \) By I.V.T \(\forall t \in (-1, 5) \exists c \in (-2, -1) \) s.t \(f(c) = t \)
i.e \(\exists c \in (-2, -1) \) s.t \(f(c) = 0 \)
\(\Rightarrow c - (1 + c^3) = 0 \Rightarrow c = 1 + c^3 \)

EX.66

If \(a \) and \(b \) are positive numbers, prove that the equation

\[
\frac{a}{x^3 + 2x^2 - 1} + \frac{b}{x^3 + x - 2} = 0
\]

has at least one solution in the interval \((-1, 1)\).

<pf>
\[x^3 + 2x^2 - 1 = (x + 1)(x^2 + x - 1) \land x^3 + x - 2 = (x - 1)(x^2 + x + 2) \]
Define \(f(x) = \frac{a}{x^3 + 2x^2 - 1} + \frac{b}{x^3 + x - 2} \)
\[
\lim_{x \to 1^-} f(x) = \frac{a}{2} + \lim_{x \to 1^-} \frac{b}{x^3 + x - 2} \Rightarrow \lim_{x \to 1^-} \frac{b}{x^3 + x - 2} = -\infty
\]
\[
\lim_{x \to (\sqrt{5} - 1)^+} f(x) = \lim_{x \to (\sqrt{5} - 1)^+} \frac{a}{x^3 + 2x^2 - 1} + \frac{b}{3\sqrt{5} - 2} \Rightarrow \lim_{x \to (\sqrt{5} - 1)^+} \frac{a}{x^3 + 2x^2 - 1} = \infty
\]
Given \(\varepsilon > 0 \) \(\exists x_1, x_2 \in (-1, 1) \)
s.t \(1 - x_1 < \varepsilon \land x_2 - \frac{\sqrt{5} - 1}{2} < \varepsilon \)
satisfy \(f(x_1) < 0 \land f(x_2) > 0 \)
\(\Rightarrow f(x) \) has at least one solution in the interval \((-1, 1)\).