Solution of Exercise 2.3

$\mathbf{EX.22}$

 $\lim_{u \to 2} \frac{\sqrt{4u+1}-3}{u-2} = \lim_{u \to 2} \frac{\sqrt{4u+1}-3}{u-2} \cdot \frac{\sqrt{4u+1}+3}{\sqrt{4u+1}+3} = \lim_{u \to 2} \frac{(4u+1)-9}{(u-2)(\sqrt{4u+1}+3)} = \lim_{u \to 2} \frac{4u-8}{(u-2)(\sqrt{4u+1}+3)} = \lim_{u \to 2} \frac{4u-8$

EX.26

 $\lim_{t \to 0} \left(\frac{1}{t} - \frac{1}{t^2 + t}\right) = \lim_{t \to 0} \left(\frac{1}{t} - \frac{1}{t(t+1)}\right) = \lim_{t \to 0} \frac{(t+1) - 1}{t(t+1)} = \lim_{t \to 0} \frac{t}{t(t+1)} = \lim_{t \to 0} \frac{1}{t(t+1)} = \lim_{t \to$

EX.29

 $\lim_{t \to 0} \left(\frac{1}{t\sqrt{1+t}} - \frac{1}{t} \right) = \lim_{t \to 0} \frac{1 - \sqrt{1+t}}{t\sqrt{1+t}} = \lim_{t \to 0} \frac{1 - \sqrt{1+t}}{t\sqrt{1+t}} \cdot \frac{1 + \sqrt{1+t}}{1 + \sqrt{1+t}} = \lim_{t \to 0} \frac{1 - (1+t)}{t\sqrt{1+t}(1 + \sqrt{1+t})} = \lim_{t \to 0} \frac{-1}{\sqrt{1+t}(1 + \sqrt{1+t})} = \frac{-1}{2}$

$\mathbf{EX.32}$

 $\lim_{h \to 0} \frac{\frac{1}{(x+h)^2} - \frac{1}{x^2}}{h} = \lim_{h \to 0} \frac{\frac{x^2 - (x+h)^2}{x^2(x+h)^2}}{h} = \lim_{h \to 0} \frac{-2hx - h^2}{hx^2(x+h)^2} = \lim_{h \to 0} \frac{-h(2x+h)}{hx^2(x+h)^2} = \frac{$

EX.40

 $-1 \leq \sin(\pi/x) \leq 1 \Rightarrow e^{-1} \leq e^{\sin(\pi/x)} \leq e^1 \Rightarrow \sqrt{x}/e \leq \sqrt{x}e^{\sin(\pi/x)} \leq \sqrt{x}e$. Since $\lim_{x\to 0^+} (\sqrt{x}/e) = \lim_{x\to 0^+} \sqrt{x}e = 0$, we have $\lim_{x\to 0^+} [\sqrt{x}e^{\sin(\pi/x)}] = 0$ by the Squeeze Theorem.

EX.45

Since |x| = -x for x < 0, we have $\lim_{x\to 0^-} \left(\frac{1}{x} - \frac{1}{|x|}\right) = \lim_{x\to 0^-} \left(\frac{1}{x} - \frac{1}{-x}\right) = \lim_{x\to 0^-} \frac{2}{x}$, which does not exist since the denominator approaches 0 and the numerator does not.

EX.46

Since |x| = x for x > 0, we have $\lim_{x \to 0^+} \left(\frac{1}{x} - \frac{1}{|x|}\right) = \lim_{x \to 0^+} \left(\frac{1}{x} - \frac{1}{x}\right) = \lim_{x \to 0^+} 0 = 0$

EX.52

(a)

(b)

(i)

 $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^+} f(x) = 0$, so $\lim_{x\to 0} f(x) = 0$

(ii)

As
$$x \to \left(\frac{\pi}{2}\right)^-$$
, $f(x) \to 0$, so $\lim_{x \to \left(\frac{\pi}{2}\right)^-} f(x) = 0$

(iii)

As $x \to (\frac{\pi}{2})^+$, $f(x) \to -1$, so $\lim_{x \to (\frac{\pi}{2})^+} f(x) = -1$

Since the answers in parts (ii) and (iii) are not equal , so $\lim_{x\to \frac{\pi}{2}}f(x)$ does not exist.

(c)

 $\lim_{x\to a} f(x)$ exists for all a in the open interval $(-\pi,\pi)$ except $a = -\frac{\pi}{2}$ and $a = \frac{\pi}{2}$.

⁽iv)

EX.53

 $\lim_{x\to 2^-} f(x) = 1 - 2 = -1$, $\lim_{x\to 2^+} f(x) = 2 - 3 = -1$, so $\lim_{x\to 2} f(x) = -1$. f(2) = 2 - 2 = 0, hence $\lim_{x\to 2} f(x)$ exists but is not equal to f(2).

EX.59

Observe that $0 \le f(x) \le x^2$ for all x, and $\lim_{x\to 0} 0 = 0 = \lim_{x\to 0} x^2$. So, by the Squeeze Theorem , we have $\lim_{x\to 0} f(x) = 0$.

EX.63

Since the denominator approaches 0 as $x \to -2$, the limit will exist only if the numerator also approaches 0 as $x \to -2$. In order for this to happen, we need $\lim_{x\to-2} (3x^2 + ax + a + 3) = 0 \Leftrightarrow 3(-2)^2 + a(-2) + a + 3 = 0 \Leftrightarrow 12 - 2a + a + 3 = 0 \Leftrightarrow a = 15$. With a = 15, the limit becomes $\lim_{x\to-2} \frac{3x^2 + 15x + 18}{x^2 + x - 2} = \lim_{x\to-2} \frac{3(x+2)(x+3)}{(x-1)(x+2)} = \lim_{x\to-2} \frac{3(x+3)}{x-1} = \frac{3(-2+3)}{-2-1} = \frac{3}{-3} = -1$.