SECTION 9.6: Taylor and Maclaurin Series

Exercise 1

‘We make use of the Maclaurin series of e*:
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The series above holds for all real number x.
Substituting 3z for x, and then multiply by e, we get:
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The resulting Maclaurin series is valid for any real x since the original
Maclaurin series holds for any real x.

Exercise 3

Solution 1:

Using the relations between trigonometric functions and the exponential
function, we obtain:

(The fifth equality holds since i* = (—i)¥ when k is even; and i* = —(—i)*
when k is odd).

The Maclaurin series holds for all real value = since only exponential func-
tions are involved, and they are valid for all real value.



Solution 2:
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Observe that sin(z — %) =
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(sinx — cosx), we immediately get:

Exercise 5

Substitute £ for  in the Maclaurin series of sinz, then multiply by z2, we
obtain:
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The resulting Maclaurin series is valid for every real x since the Maclaurin
series of the sin z holds for every real x.

Exercise 8

Substitute 522 for  in the Maclaurin series of tan~! z, we obtain:
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As we know the Maclaurin series of tan™! = converges for all -1 < z < 1,
the Maclaurin series of tan~—!(5x2) converges if and only if —1 < 522 < 1,

equivalently, if 0 < 2% < 1 < —% <z< %

Exercise 12

Substitute 2z2 for x in the Maclaurin series of e*, we have:
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Note that the function f(z) = ¢ ——1 is not defined at = = 0, but it has a

limit at = 0 (this can be confirmed by examining the constant term of the
Maclaurin series of f(x) or by using the I'Hopital’s rule):
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If we define f(0) = 2, the Maclaurin series converges for any real value z, as
the Maclaurin series of e* does.

Exercise 17

Solution 1:

Compute the nth derivative of f(z), we have f(7) = —1 and:

f'(z) = —sinx, f(m)=0

f"(x) = —cosx, fi(r)=1
f®(z) =sinz, =0
f®(z) = cosz, f@(r)=-1
O (z) = —sinw, fOm =0

Thus, the Taylor series for f(x) = cosz in powers of x — 7 is
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The series converges for all real value x by the ratio test:
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Solution 2:

Let u = x — 7. The by the Maclaurin series of cosu we have:
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Exercise 19



Let t = % Then we have:

In2+2z)=mn(4+(r—2)) =Ind+1In <1 + x;Q) =In4+In(1+1).

So we can use the Maclaurin series of In(1 + ¢) to compute the required
Taylor series as follows:
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Since the Maclaurin series of In(1 4 ¢) converges when —1 < ¢ < 1, and
x = 4t + 2, the resulting Taylor series of In(2 + z) converges when —2 < z < 6.

Exercise 22

We use a trigonometric identity to express cos?z in terms of cos2z, and

then use addition formula for cosine to compute the Taylor series of cos2x at
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The resulting Taylor series is valid for every real x since the Maclaurin series
of the sine and cosine function both hold for every real z.



Exercise 24

‘We have
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From the resulting Taylor series, we immediately see that the Taylor series
converges when |z — 1| < 2 <= -1 <z < 3.

Exercise 28

We first need to compute the first three nonzero terms (excluding the con-
stant term) in the Maclaurin series for sec z, then we can compute the first three
nonzero terms in the Maclaurin series for sec z tan x, since (secx)’ = secx tan .
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Hence,

secrtanz = (secx) = x + §m3 + ﬂ;ﬁ +
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Exercise 29

Using the Maclaurin series of tan™! v and e®, we have:






