
SECTION 9.6: Taylor and Maclaurin Series

Exercise 1

We make use of the Maclaurin series of ex:

ex =

∞∑
n=0

1

n!
xn = 1 + x+

1

2
x2 +

1

3!
x3 + · · · .

The series above holds for all real number x.
Substituting 3x for x, and then multiply by e, we get:

e3x+1 = e+ 3ex+
32e

2
x2 +

33e

3!
x3 + · · · =

∞∑
n=0

3ne

n!
xn.

The resulting Maclaurin series is valid for any real x since the original
Maclaurin series holds for any real x.

Exercise 3

Solution 1:

Using the relations between trigonometric functions and the exponential
function, we obtain:

sin
(
x− π

4

)
=

1

2i
(ei(x−

π
4 ) − e−i(x−π4 ))

=
1

2i

(√
2

2
−
√

2

2
i

)
eix − 1

2i

(√
2

2
+

√
2

2
i

)
e−ix

=

(
−
√

2

4
−
√

2

4
i

)
eix −

(√
2

4
−
√

2

4
i

)
e−ix

=

∞∑
n=0

(
−
√

2

4
−
√

2

4
i

)
in

n!
xn −

∞∑
n=0

(√
2

4
−
√

2

4
i

)
(−i)n

n!
xn

=

∞∑
k=0

−
√

2

2

i2k

(2k)!
x2k +

∞∑
k=0

−
√

2i

2

i2k+1

(2k + 1)!
x2k+1

=

√
2

2

∞∑
k=0

(
− (−1)k

(2k)!
x2k +

(−1)k

(2k + 1)!
x2k+1

)
(The fifth equality holds since ik = (−i)k when k is even; and ik = −(−i)k

when k is odd).
The Maclaurin series holds for all real value x since only exponential func-

tions are involved, and they are valid for all real value.
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Solution 2:

Observe that sin(x− π
4 ) =

√
2
2 (sinx− cosx), we immediately get:

sin
(
x− π

4

)
=

√
2

2

∞∑
k=0

(
− (−1)k

(2k)!
x2k +

(−1)k

(2k + 1)!
x2k+1

)
.

Exercise 5

Substitute x
3 for x in the Maclaurin series of sinx, then multiply by x2, we

obtain:

x2 sin
x

3
= x2

(
x

3
− 1

3!

x3

33
+

1

5!

x5

35
− · · ·

)
=

∞∑
n=0

(−1)n

32n+1(2n+ 1)!
x2n+3.

The resulting Maclaurin series is valid for every real x since the Maclaurin
series of the sinx holds for every real x.

Exercise 8

Substitute 5x2 for x in the Maclaurin series of tan−1 x, we obtain:

tan−1(5x2) = 5x2 − (5x2)3

3
+

(5x2)5

5
− · · · =

∞∑
n=0

(−1)n52n+1

2n+ 1
x4n+2.

As we know the Maclaurin series of tan−1 x converges for all −1 ≤ x ≤ 1,
the Maclaurin series of tan−1(5x2) converges if and only if −1 ≤ 5x2 ≤ 1,

equivalently, if 0 ≤ x2 ≤ 1
5 ⇐⇒ −

√
5
5 ≤ x ≤

√
5
5 .

Exercise 12

Substitute 2x2 for x in the Maclaurin series of ex, we have:

e2x
2

= 1 + 2x2 +
(2x2)2

2!
+

(2x2)3

3!
+ · · · =

∞∑
n=0

2n

n!
x2n

Therefore,

e2x
2 − 1

x2
=

1

x2

∞∑
n=1

2n

n!
x2n =

∞∑
n=1

2n

n!
x2n−2.

Note that the function f(x) = e2x
2
−1

x2 is not defined at x = 0, but it has a
limit at x = 0 (this can be confirmed by examining the constant term of the
Maclaurin series of f(x) or by using the l’Hôpital’s rule):
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lim
x→0

e2x
2 − 1

x2
= lim
u→0

e2u − 1

u
= lim
u→0

2e2u

1
= 2.

If we define f(0) = 2, the Maclaurin series converges for any real value x, as
the Maclaurin series of ex does.

Exercise 17

Solution 1:

Compute the nth derivative of f(x), we have f(π) = −1 and:

f ′(x) = − sinx, f ′(π) = 0

f ′′(x) = − cosx, f ′′(π) = 1

f (3)(x) = sinx, f (3)(π) = 0

f (4)(x) = cosx, f (4)(π) = −1

f (5)(x) = − sinx, f (5)(π) = 0

...
...

Thus, the Taylor series for f(x) = cosx in powers of x− π is

cosx = −1 +
1

2!
(x− π)2 − 1

4!
(x− π)4 + · · · =

∞∑
n=0

(−1)n+1

(2n)!
(x− π)2n.

The series converges for all real value x by the ratio test:

lim
n→∞

∣∣∣∣∣∣
(−1)n+2

(2(n+1))!x
2(n+1)

(−1)n+1

(2n)! x2n

∣∣∣∣∣∣ = lim
n→∞

(2n)!

(2n+ 2)!
|x|2 = lim

n→∞

|x|2

(2n+ 1)(2n+ 2)
= 0.

Solution 2:

Let u = x− π. The by the Maclaurin series of cosu we have:

cosx = − cosu = −1 +
u2

2!
− u4

4!
+ · · · =

∞∑
n=0

(−1)n+1u2n

(2n)!

=

∞∑
n=0

(−1)n+1

(2n)!
(x− π)2n

Exercise 19
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Let t = x−2
4 . Then we have:

ln(2 + x) = ln(4 + (x− 2)) = ln 4 + ln

(
1 +

x− 2

4

)
= ln 4 + ln(1 + t).

So we can use the Maclaurin series of ln(1 + t) to compute the required
Taylor series as follows:

ln(2 + x) = ln 4 + ln(1 + t)

= 2 ln 2 + t− t2

2
+
t3

3
− · · ·

= 2 ln 2 +

∞∑
n=1

(−1)n−1

n
tn

= 2 ln 2 +

∞∑
n=1

(−1)n−1

n4n
(x− 2)n

Since the Maclaurin series of ln(1 + t) converges when −1 ≤ t ≤ 1, and
x = 4t+ 2, the resulting Taylor series of ln(2 + x) converges when −2 ≤ x ≤ 6.

Exercise 22

We use a trigonometric identity to express cos2 x in terms of cos 2x, and
then use addition formula for cosine to compute the Taylor series of cos 2x at
π
4 = 2× π

8 .

cos2 x =
1 + cos 2x

2

=
1

2
+

1

2
cos
(

2x− π

4
+
π

4

)
=

1

2
+ cos

(
2x− π

4

)
cos

π

4
− sin

(
2x− π

4

)
sin

π

4

=
1

2
+

√
2

2

[
1− 22

2!

(
x− π

8

)2
+

24

4!

(
x− π

8

)4
− · · ·

]
−
√

2

2

[
2
(
x− π

8

)
− 23

3!

(
x− π

8

)3
+

25

5!

(
x− π

8

)5
− · · ·

]
=

1 +
√

2

2

+

√
2

2

∞∑
n=1

(−1)n
(

22n−1

(2n− 1)!

(
x− π

8

)2n−1
+

22n

(2n)!

(
x− π

8

)2n)
.

The resulting Taylor series is valid for every real x since the Maclaurin series
of the sine and cosine function both hold for every real x.
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Exercise 24

We have

x

1 + x
= 1− 1

1 + x
= 1− 1

2 + (x− 1)
= 1− 1

2

1

1 + x−1
2

= 1− 1

2

[
1− x− 1

2
+

(
x− 1

2

)2

− · · ·

]

=
1

2
+

∞∑
n=1

(
−1

2

)n+1

(x− 1)n.

From the resulting Taylor series, we immediately see that the Taylor series
converges when |x− 1| < 2⇐⇒ −1 < x < 3.

Exercise 28

We first need to compute the first three nonzero terms (excluding the con-
stant term) in the Maclaurin series for secx, then we can compute the first three
nonzero terms in the Maclaurin series for secx tanx, since (secx)′ = secx tanx.

secx = (cosx)−1 =
1

1− 1
2x

2 + 1
24x

4 − 1
720x

6 + · · ·

= 1 +

(
1

2
x2 − 1

24
x4 +

1

720
x6 − · · ·

)
+

(
1

2
x2 − 1

24
x4 +

1

720
x6 − · · ·

)2

+

(
1

2
x2 − 1

24
x4 + · · ·

)3

+ · · ·

= 1 +
1

2
x2 +

(
− 1

24
+

1

4

)
x4 +

(
1

720
− 2

2× 24
+

1

8

)
x6 + · · ·

= 1 +
1

2
x2 +

5

24
x4 +

61

720
x6 + · · · .

Hence,

secx tanx = (secx)′ = x+
5

6
x3 +

61

120
x5 + · · · .

Exercise 29

Using the Maclaurin series of tan−1 u and ex, we have:
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tan−1(ex − 1) = tan−1
(
x+

1

2
x2 +

1

6
x3 + · · ·

)
=

(
x+

1

2
x2 +

1

6
x3 + · · ·

)
− 1

3

(
x+

1

2
x2 +

1

6
x3 + · · ·

)3

+ · · ·

= x+
1

2
x2 +

(
1

6
− 1

3
× 1

)
x3 + · · · = x+

1

2
x2 − 1

6
x3 + · · · .
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