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1. (16 points) Prove that the series

∞∑
n=2

(−1)n

n(n− 1)

1

2n
converges absolutely, and find its sum.

Solution:

Part I (6pts) Prove the series converges absolutely

let an =

∞∑
n=2

(−1)n

n(n− 1)

1

2n

then the series convergent absolutely if

∞∑
n=2

|an| converges

use ratio test:

lim
n→∞

|an+1

an
| = (

1

(n+ 1)n2n+1
/

1

(n)(n)2n
) =

1

2
< 1

use comparison test:

compared an to bn =
1

n2
or bn =

1

2n

show that an < bn everywhere and prove that

∞∑
n=2

|bn| converges

Part II (10pts)find its sum

f(x) =
1

1 + x
= 1− x+ x2 − x3 + x4.... =

∞∑
n=0

(−1)nxn

g(x) =

∫
1

1 + x
dx = ln(1 + x) = x− 1

2
x2 +

1

3
x3....+ c1 =

∞∑
n=1

(−1)n−1
1

n
xn + c2

For x = 0→ c1 = c2 = 0

h(x) =

∫
ln(1 + x)dx =

1

1× 2
x2 − 1

2× 3
x3 +

1

3× 4
x4 + ....+ c3 =

∞∑
n=2

(−1)n
1

n(n− 1)
xn + c4

(1 + x) ln(1 + x)− (1 + x) =

∞∑
n=2

(−1)n
1

n(n− 1)
xn + c4

For x = 0→ c4 = −1

let x =
1

2
∞∑

n=2

(−1)n
1

n(n− 1)
xn =

3

2
ln

3

2
− 1

2

2. (a) (8 points) The Binomial Theorem implies that

(1− x)−
1
2 = 1 +

∞∑
n=1

(2n)!

kn(n!)2
xn

for some constant k. Find k, and find the interval of convergence of the power series.

(b) (8 points) Estimate the error if one uses x = −1

4
, and the first five non-zero terms in (a) to approximate

1√
5

.

Solution:
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(a) (1− x)
−1
2 =

∞∑
n=0

(2n)!

4nn!2
xn. So k = 4.(2 points)

Let an =
(2n)!

4nn!2
. R = lim

an
an+1

= 1. (2 points)

At x = −1, since an is decreasing and converge to 0,
∑

an(−1)n converges. (2 points)

At x = 1, since
∑

an ≥
∑

anx
n = (1− x)

−1
2 for all x ∈ (−1, 1) and lim

x→1−
(1− x)

−1
2 =∞.∑

an diverges. (2 points)

Hence, the interval of convergence is [−1, 1).

(b)
1√
5

=
1

2
((1− (−1

4
))

−1
2 =

1

2
(

∞∑
n=0

(2n)!

4nn!2
(−1

4
)n) (1 point)

Since it is an alternating series (2 points),

| 1√
5
− 1

2
(

∞∑
n=0

(2n)!

4nn!2
(−1

4
)n)| ≤ 10!

2 ∗ 410(5!)2
=

126

410
(5 points)

3. (16 points) Consider the curve

r(t) = t2 i + (sin t− t cos t) j + (cos t+ t sin t) k, t ≥ 0

Find T(t), N(t), B(t), the curvature κ(t) and the torsion τ(t).

Solution:

r(t) = (t2, sint− tcost, cost+ tsint)

r′(t) = v(t) = (2t, cost+ tsint− cost,−sint+ tcost+ sint) = (2t, tsint, tcost) (1% )
r′′(t) = a(t) = (2, sint+ tcost, cost− tsint)
r′′′(t) = a′(t) = (0, 2cost− tsint,−2sint− tcost)

|r′(t)| =
√

4t2 + t2sin2t+ t2cos2t =
√

5t ( 1% )

T (t) =
r′(t)

|r′(t)|
=

1√
5

(2, sint, cost) =

√
5

5
(2, sint, cost) ( 2% )

To get full points (3%) please answer both question correctly.

T ′(t) =
1√
5

(0, cost,−sint) , |T ′(t)| = 1√
5

√
cos2t+ sin2t =

1√
5

N(t) =
T ′(t)

|T ′(t)|
= B(t) ·N(t) = (0, cost,−sint) ( 3% )

To get full points (3%) please answer both question correctly.

κ(t) =
|T ′(t)|
|r′(t)|

=
|v(t)× a(t)|

[v(t)]3
=

1√
5

1√
5t

=
1

5t
( 3% )

To get full points (3%) please answer both question correctly.

v(t)× a(t) = (−t2, 2t2sint, 2t2cost) (1% )

|v(t)× a(t)| =
√

(−t2)2 + (2t2sint)2 + (2t2cost)2 =
√
t4 + 4t4 =

√
5t2

If your calculation is wrong, you will receive some partial credit.

B(t) =
v(t)× a(t)

|v(t)× a(t)|
=

1√
5

(−1, 2sint, 2cost) =

√
5

5
(−1, 2sint, 2cost) ( 2% )

To get full points (3%) please answer both question correctly.

τ(t) =
[v(t)× a(t)] · a′(t)
|v(t)× a(t)|2

=
2t2sint(2cost− tsint) + 2t2cost(−2sint− tcost)

5t4

=
(4t2sint · cost− 2t3sin2t) + (−4t2sint · cost− 2t2cost2t)

5t4

=
−2t3

5t4
=
−2

5t
( 3% )

I will also grant partial credit for partial solutions and solutions with minor flaws. I will give no credit for
wildly incorrect answers which are obviously only there in the hopes of getting partial credit.
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4. (16 points) Let F (x, y, z) = x2 + 2z +

∫ z

y

3
√

(t2 + 7)y2dt. Find the tangent plane of the surface F (x, y, z) = 2 at the

point (2,−1,−1).

Solution:

F1 =
∂F

∂x
= 2x (1 points)

F2 =
∂F

∂y
=

2

3
y

−1
3

∫ z

y

3
√
t2 + 7dt− y 2

3
3
√
y2 + 7 (5 points)

F3 =
∂F

∂z
= 2 + y

2
3

3
√
z2 + 7 (4 points)

F1(2,−1,−1) = 4 (1 points)
F2(2,−1,−1) = −2 (2 points)
F3(2,−1,−1) = 4 (1 points)
4(x− 2)− 2(y + 1) + 4(z + 1) = 0 (2 points)

5. Suppose that z = f(x, y) has continuous second order partial derivatives, and x = s2 − t2, y = 2st. Define

F (s, t) = f(s2 − t2, 2st)

(a) (6 points) Express Fs, Ft in terms of fx, fy, s and t.

(b) (10 points) Show that Fss + Ftt = h(s, t)(fxx + fyy) for some function h(s, t). Find h(s, t) explicitly.

Solution:

5.(a)

Fs(s, t) = 2sfx(s
2 − t2, 2st) + 2tfy(s

2 − t2, 2st)..................................(3pts)

Ft(s, t) = −2tfx(s2 − t2, 2st) + 2sfy(s
2 − t2, 2st)...............................(3pts)

(b)

Fss(s, t) = 2fx + 2s[2sfxx + 2tfxy] + 2t[2sfxy + 2tfyy]

= 2fx + 4s2fxx + 8stfxy + 4t2fyy...........................................(3pts)

Ftt(s, t) = −2fx + 4t2fxx − 8stfxy + 4s2fyy........................................(3pts)

Fss(s, t) + Ftt(s, t) = 4(s2 + t2)fxx + 4(s2 + t2)fyy...............................(2pts)

= 4(s2 + t2)(fxx + fyy)⇒ h(s, t) = 4(s2 + t2)........(2pts)

6. Let f(x, y, z) = yx2 + xz2 − y.

(a) (10 points) Find all critical points of f(x, y, z) and classify them.

(b) (10 points) Find the maximum and minimum of f on the region x2 + y2 + z2 ≤ 1.

Solution:

(a)
f1 = 2xy + z2 (1 point)
f2 = x2 − 1 (1 point)
f3 = 2xz (1 point)

⇒ critical points at f1 = f2 = f3 = 0
⇒ (±1, 0, 0) (2 points)

Hessian

 2y 2x 2z
2x 0 0
2z 0 2x

 (1 point)⇒

 0 ±2 0
±2 0 0
0 0 ±2

 (2 points)

def H 6= 0⇒ neither positive definite nor negative definite

⇒ both saddle points (2 points)
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(b)
x2 + y2 + z2 − 1 = g(x, y, z) ≤ 0

Solve the system

{
∇f = λ∇g (1 point)
g = 0

2xz + z2 = 2λx (1 point)
x2 − 1 = 2λy (1 point)
2xz = 2λz (1 point)
x2 + y2 + z2 = 1

case 1: z = 0, then 2xy = 2λx. If x = 0, y = ±1 ⇒ (0,±1, 0) ⇒ f(0,±1, 0) = ∓1
If x 6= 0, y = λ ⇒ x2 = 2y2 + 1 = 1− y2 ⇒ (±1, 0, 0) ⇒ f(±1, 0, 0) = 0 (1 point)
case 2: z 6= 0, x = λ ⇒ x2 = 2xy + 1 = (2x2 − z2) + 1 ⇒ (0, 0,±1) ⇒ f(0, 0,±1) = 0 (1 point)
max = 1 at (0,−1, 0) (2 points), min = −1 at (0, 1, 0) (2 points)
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