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1. Let a > 0 be a positive constant.

(a) (10 points) Given a function f continuous on [0, a], reduce the iterated integral
ˆ a

0

du

ˆ u

0

dv

ˆ v

0

f(w)dw

to a one-dimensional ordinary Riemann integral

ˆ a

0

H(w)dw. Find H in terms of f .

(b) (4 points) Evaluate

ˆ a

0

du

ˆ u

0

dv

ˆ v

0

e(w−a)
3

dw.

Solution:

(a)
Answer is ˆ a

0

f(w)dw

ˆ a

w

du

ˆ u

w

dv =

ˆ a

0

1

2
(w − a)2f(w)dw

or ˆ a

0

f(w)dw

ˆ a

w

dv

ˆ a

v

du =

ˆ a

0

1

2
(w − a)2f(w)dw

So

H(w) =
1

2
(w − a)2f(w)

(10 points)

(If you draw the right graph, you obtain 2 point. And integral range is right only for u or v , you can get 3
points)
(b) ˆ a

0

du

ˆ u

0

dv

ˆ v

0

f(w)dw =

ˆ a

0

1

2
(w − a)2e(w−a)

3

dw

(1 points)
Let t = (w − a)3 ⇒ dt = 3(w − a)2dw
It implies

1

6

ˆ 0

−a3
etdt =

1

6
(1− e−a

3

)

(3 points)

2. (14 points) Show that the vector field F = x sin 2z i + y sin 2z j + cos 2z k is solenoidal in R3 and find a vector
potential H = P (y, z) i +Q(x, z) j satisfying H(1, 1, 0) = j and H(0, 0, 0) = 0.

Solution:

divF = sin2z + sin2z − 2sin2z = 0⇒ solenoidal (2 points)
vector potential means that
curlH = F and curlH = (−Qz(x, z), Pz(y, z), Qx(x, z)− Py(y, z))
So we have that  Qz(x.z) = −xsin2z

Pz(y, z) = ysin2z
Qx(x, z)− Py(y, z) = cos2z

(3 points)

By integration we obtain

Q(x, z) =
x

2
cos2z +A(x)

P (y, z) =
−y
2
cos2z +B(y)

(2 points)

Qx(x, z)− Py(y, z) =
1

2
cos2z +A′(x)− −1

2
cos2z +B′(y) = cos2z

(2 points)
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So we know that
A′(x) = B′(y) = constant = c ∀x, y

so we can assume A(x) = cx+ a and B(y) = cy + b
(2 points)

use the condition of H to find a,b,c

H(1, 1, 0) = P (1, 0)i+Q(1, 0)j = j ⇒ Q(1, 0) = 1, P (1.0) = 0

H(0, 0, 0) = P (0, 0)i+Q(0, 0)j = 0⇒ Q(0, 0) = 0, P (0.0) = 0

So from above arguments, we can get

a = 0, b = 0, c =
1

2

It implies

H(x, y, z) = (
−ycos2z + y

2
,
xcos2z + x

2
, 0)

(3 points)

3. (15 points) Find the volume of the region lying inside all three of the circular cylinders x2 + y2 = a2, x2 + z2 = a2,
and y2 + z2 = a2. [Hint: See the figure for the first octant part of the region, and use symmetry whenever possible.]

Solution:

One eighth of the required volume lies in the first octant. The eighth is divided into two equal parts by the
plane x = y. One of these parts lies above the circular sector D in the xy−plane specified in polar coordinate

by 0 ≤ r < a, 0 ≤ θ <
π

4
, and beneath the cylinder z =

√
a2 − x2. Thus, the total volume lying inside all three

cylinders is

V = 16

¨
D

√
a2 − x2 dxdy

where 16 : 1% ,
√
a2 − x2 : 6% . Then we use the polar coordinate to get

V = 16

ˆ π/4

0

dθ

ˆ a

0

√
a2 − r2 cos2 θ rdr

where 0 ≤ θ < π

4
: 2% , 0 ≤ r < a : 2% , dxdy = rdrdθ : 2%
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Let u = a2 − r2 cos2 θ, du = −2r cos2 θdr.

V = 8

ˆ π/4

0

dθ

cos2 θ

ˆ a2

a2 sin2 θ

u1/2 du =
16a3

3

ˆ π/4

0

1− sin3 θ

cos2 θ
dθ

=
16a3

3

ˆ π/4

0

(
sec2 θ − 1− cos2 θ

cos2 θ
sin θ

)
dθ =

16a3

3

(
tan θ − 1

cos θ
− cos θ

)∣∣∣∣∣
π/4

0

=
16a3

3

(
1− 0−

√
2 + 1− 1√

2
+ 1

)
= 16

(
1− 1√

2

)
a3 cu. units.

where

(
1− 1√

2

)
a3 : 2%

4. Consider the vector fields

F = (1 + x)ex+yi + (xex+y + 2y)j− 2zk,

G = (1 + x)ex+yi + (xex+y + 2z)j− 2yk.

(a) (7 points) Show that F is conservative by finding a potential for it.

(b) (8 points) Evaluate

ˆ
C
G · dr, where C is given by

r = (1− t)eti + tj + 2tk, (0 ≤ t ≤ 1)

by taking advantage of the similarity between F and G.

Solution:

(a) F = (1 + x)ex+yi+ (xex+y + 2y)j − 2zk = ∇(xex+y + y2 − z2) (7points).

(b)

ˆ
c

G · dr =

ˆ
c

F · dr +

ˆ
c

2(z − y)(j + k) · dr (2points)

= (xex+y + y2 − z2)
∣∣∣(0,1,2)
(1,0,0)

+ 2

ˆ 1

0

(2t− 1)(1 + 2)dt (4 points)

= −3− e+ 3 = −e (2points)

5. (14 points) Let F =

(√
x2 + y2 − x

1 + y2

)
i+
(
ex + tan−1 y

)
j and C be the positively oriented cardioid r = 1+cos θ.

Find

˛
C
F · n ds.

Solution:

Let
P =

√
x2 + y2 − x

1 + y2
, Q = ex + tan−1y

By Green’s Theorem,

˛
C

F · n ds =

¨
D

(Px +Qy) dA (4%)

=

¨
D

[(
x√

x2 + y2
− 1

1 + y2
) + (

1

1 + y2
)] dA

=

¨
D

x√
x2 + y2

dA (2%)
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=

ˆ 2π

0

ˆ 1+cosθ

0

rcosθ

r
rdrdθ (4%)

=

ˆ 2π

0

cosθ [
r2

2
]1+cosθ0 dθ

=
1

2

ˆ 2π

0

(cosθ + 2cos2θ + cos3θ)dθ

=

ˆ 2π

0

(
1 + cos2θ

2
)dθ

= π (4%)

ps.
1

2

ˆ 2π

0

(cosθ + cos3θ)dθ = 0

6. Let F(x, y, z) = yi + zj + xk.

(a) (4 points) Find curl F

(b) (10 points) Evaluate

˛
C
ydx+ zdy + xdz, where C is the intersection curve of the surface x2 + y2 + z2 = a2 and

x+ y + z = 0 oriented counterclockwise when viewed from positive z-axis.

Solution:

(a.) (4 points)

curl(~F ) =

∣∣∣∣∣∣∣∣
~i ~j ~k
∂

∂x

∂

∂y

∂

∂z
y z x

∣∣∣∣∣∣∣∣ = −~i−~j − ~k

(b.)
Method 1:
C is the boundary of surfaces: x2 + y2 + z2 = a2 and S : x+ y + z = 0

the normal vector of S is ~n =
~i+~j + ~k√

3
(3 points),

by stokes theorem ,

˛
c

ydx+ zdy + xdz =

ˆ
s

curl(~F ) · ~nds = −
√

3

ˆ
s

ds (4 points,one equal sign is 2 points )

S is a circular disk whose radius is a. Area of S=πa2.

−
√

3

ˆ
s

ds=−
√

3(area of S)=−
√

3πa2

Thus,

˛
c

ydx+ zdy + xdz = −
√

3πa2 (3 points)

Method 2:
C is projected on x-y plane to get the new cuve C̃

C̃: x2 + y2 + (−x− y)2 = a2 , also, x2 + y2 + xy =
1

2
a2
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C̃ is oriented clockwisely in x-y plane.
( the equation and orientation of C̃, 3points)

˛
c

ydx+ zdy + xdz =

˛
C̃

[ydx− (x+ y)dy + x(−dx− dy)] =

˛
C̃

[ydx− 2xdy] + [−xdx− ydy] (1 point)

However, xdx+ ydy = 0 has potential
1

2
(x2 + y2) ,thus,

˛
C̃

[−xdx− ydy] = 0 (1 point)

By Green theorem, ˛
c

ydx+ zdy + xdz =

˛
C̃

[ydx− 2xdy]

by Green theorem, ˛
C̃

[ydx− 2xdy] =

ˆ
x2+y2+xy≤ 1

2a
2

[−2− 1]dxdy (2 points)

=−3(area of x2 + y2 + xy ≤ 1

2
a2)=−3

1√
3
πa2=−

√
3πa2 (3points)

7. (14 points) Evaluate the flux of F(x, y, z) =
(
x2 + sin(y3 + 2z2)

)
i+ (ex

2

+ y2)j+ (3 + x)k upward across the surface

S defined by x2 + y2 + z2 = 2az + 3a2, z ≥ 0, where a > 0 is a constant.

Solution:

We call the area inside this boundary S.

S = {x2 + y2 + (z − a)2 ≤ 4a2, z ≥ 0} (1pt)

Then the boundary of S is
∂S = S1 + S2,

where S1 is the range we want to calculate on, and S2 = {x2 + y2 = 3a2, z = 0}. Note that the normal direction
of S2 is downward. Then by Divergence theorem,˚

S

∇ · F dV = The flux over ∂S (2pts)

=

‹
S1

F · ndS +

‹
S2

F · ndS (3pts) ,

∇ · F = 2x+ 2y.

Thus ˚
S

∇ · F dV = 2(x̄+ ȳ)

˚
S

dV = 0 (3pts)

(Note that if you really calculate the integration, you must use the correct range of S (2pts), sphere coordinate

may cause some problems about the range of φ and will easily omit the region {x2 +y2 ≤ 3

4
(z−a)2, 0 ≤ z ≤ a}.)

Hence ‹
S1

F · ndS = −
‹
S2

F · ndS.

Note that the normal vector of S2 is downward, that is, n = (0, 0,−1). Thus

−
‹
S2

F · ndS = −
‹
S2

F · (0, 0,−1)dS

= −
‹
S2

−(3 + x)dS

= (3 + x̄)

‹
S2

dS

= (3 + 0) ∗Area of S2

= 3 ∗ 3a2π

= 9a2π (3pts)

Thus the answer we want to calculate is 9a2π.
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