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ABSTRACT. In this work, we continue our study initiated in [11]. We
show that the generating functions of Gromov-Witten invariants with an-
cestors are invariant under a simple flop, for all genera, after an analytic
continuation in the extended Kähler moduli space.

The results presented here give the first evidence, and the only one
not in the toric category, of the invariance of full Gromov-Witten theory
under the K-equivalence (crepant transformation).

0. INTRODUCTION

0.1. Statement of the main results. Let X be a smooth complex projec-
tive manifold and ψ : X → X̄ a flopping contraction in the sense of min-
imal model theory, with ψ̄ : Z ∼= Pr → pt the restriction map to the ex-
tremal contraction. Assume that NZ/X

∼= OPr(−1)⊕(r+1). It was shown
in [11] that a simple Pr flop f : X 99K X′ exists and the graph closure
[Γ̄ f ] ∈ A∗(X× X′) induces a correspondence F which identifies the Chow
motives X̂ of X and X̂′ of X′. Furthermore, the big quantum cohomology
rings, or equivalently genus zero Gromov-Witten invariants with 3 or more
insertions, are invariant under a simple flop, after an analytic continuation
in the extended Kähler moduli space.

The goal of the current paper is to extend the results of [11] to all gen-
era. In the process we discovered the natural framework in the ancestor
potential

AX(t̄, s) := exp
∞

∑
g=0

h̄g−1FX
g (t̄, s),

which is a formal series in the Novikov variables {qβ}β∈NE(X) defined in
the stable range 2g + n ≥ 3. See Section 1 for the definitions.

The main results of this paper are the following theorems.

Theorem 0.1. The total ancestor potential AX (resp. AX′) is analytic in the ex-
tremal ray variable q` (resp. q`′). They are identified via F under a simple flop,
after an analytic continuation in the extended Kähler cone ω ∈ H1,1

R (X) + i(KX ∪
F−1KX′) via

q` = e2πi(ω.`),
where KX (resp. KX′) is the Kähler cone of X (resp. X′).
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There are extensive discussions of analytic continuation and the Kähler
moduli in Section 3. We note that the descendent potential is in general not
invariant under F (c.f. [11], §3). The descendents and ancestors are related
via a simple transformation ([7, 5], c.f. Proposition 1.1), but the transforma-
tion is in general not compatible with F . Nevertheless we do have

Theorem 0.2. For a simple flop f , any generating function of mixed invariants of
f -special type

〈τk1,l̄1 α1, · · · , τkn,l̄n αn〉g,
with 2g + n ≥ 3, is invariant under F up to analytic continuation under the
identification of Novikov variables F qβ = qF β.

Here a mixed insertion τk j,l̄j
αj consists of descendents ψk

j and ancestors

ψ̄l
j . Given f : X 99K X′ with exceptional loci Z ⊂ X and Z′ ⊂ X′, a mixed

invariant is of f -special type if for every insertion τk j,l̄j
αj with k j ≥ 1 we

have αj.Z = 0. Theorem 0.1 follows from an application of Theorem 0.2
when no descendent is present.

0.2. Outline of the contents. Section 1 contains some basic definitions as
well as special terminologies in Gromov-Witten theory used in the article.
One of the main ingredients of our proof of invariance of the the higher
genus Gromov–Witten theory is Givental’s quantization formalism [5] for
semisimple Frobenius manifolds. This is reviewed in Section 2.

Another main ingredient, in comparing Gromov-Witten theory of X and
X′, is the degeneration analysis. We generalize the genus zero results of the
degeneration analysis in [11] to ancestor potentials in all genera. The analysis
allows us to reduce the proofs of Theorem 0.1 (and 0.2) from flops of X to
flops of the local model PZ(NZ/X ⊕O).

To keep the main idea clear, we choose to work on local models first in
Section 4 and postpone the degeneration analysis till section 5. The local
models are semi-Fano toric varieties and localizations had been effectively
used to solve the genus zero case. The idea is to utilize Givental’s quan-
tization formalism on the local models to derive the invariance in higher
genus, up to analytic continuation, from our results [11] in genus zero.

In doing so, the key point is that local models have semisimple quantum
cohomology, and we trace the effect of analytic continuation carefully during
the process of quantization. The issues of the analyticity of the Frobenius
manifolds and the precise meaning of the analytic continuation involved in
this study is discussed in Section 3 before we discuss local models.

The proofs of our main results Theorem 0.1 and 0.2, as well as the degen-
eration analysis, are presented in section 5.

0.3. Some remarks on the crepant transformation conjecture. A morphism
ψ : X → X̄ is called a crepant resolution, if X is smooth and X̄ is Q-Gorenstein
such that ψ∗KX̄ = KX. When X̄ admits a resolution by a smooth Deligne-
Mumford stack (orbifold) X, there is a well-defined orbifold Gromov-Witten
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theory due to Chen-Ruan. The crepant transformation conjecture asserts a
close relationship between the Gromov-Witten theory of X and that of X.

Crepant resolution conjecture, as formulated in [2], still uses descendent
potentials rather than the ancestor potentials, as proposed in [8]. Yet ances-
tors often enjoy better properties than the corresponding descendents, as
exploited by E. Getzler [4].

Since different crepant resolutions are related by a crepant (K-equivalent)
transformation, e.g. a flop, the conjecture must be consistent with a trans-
formation under a flop (c.f. [16]). Although the descendent potentials can
be obtained from the ancestor potentials via a simple transformation, this
very transformation actually spoils the invariance under F . The insistence
in the descendents may introduce unnecessary complication in the formu-
lation of the conjecture. This is especially relevant in the stronger form of
the conjecture when the orbifolds satisfy the Hard Lefschetz conditions.

Our result suggests that a more natural framework to study crepant
transformation conjecture is to use ancestors rather than descendents. We
leave the interested reader to consult [2] and references therein.

0.4. Acknowledgements. Part of this work was done during the second
author’s visit to the NCU Center for Mathematics and Theoretic Physics
(CMTP), Jhongli, Taiwan in November 2007. He is grateful to the Mathe-
matics Department of National Central University for the hospitality dur-
ing his stay. The authors are also grateful to the anonymous referee for
providing valuable suggestions which greatly improve the exposition of
this article.

1. DESCENDENT AND ANCESTOR POTENTIALS

1.1. The ancestor potential. For the stable range 2g + n ≥ 3, let

σ := ft ◦ st : Mg,n+l(X, β)→ Mg,n

be the composition of the stabilization morphism st : Mg,n+l(X, β) → Mg,n+l

defined by forgetting the map and the forgetful morphism ft : Mg,n+l → Mg,n
defined by forgetting the last l points. The ancestors are defined to be

(1.1) ψ̄j := σ∗ψj

for j = 1, . . . , n. The class ψ̄j depends on l and n. For simplicity we suppress
l and n from the notation when no confusion is likely to arise.

Let {Tµ} be a basis of H∗(X, Q). Denote t̄ = ∑µ,k t̄µ
k ψ̄kTµ, s = ∑µ sµTµ,

and let

FX
g (t̄, s) = ∑

n,l,β

qβ

n!l!
〈t̄n, sl〉g,n+l,β

= ∑
n,l,β

qβ

n!l!

∫
[Mg,n+l(X,β)]vir

n

∏
j=1

∑
k,µ

t̄µ
k ψ̄k

j ev∗j Tµ

n+l

∏
j=n+1

∑
µ

sµ ev∗j Tµ
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be the generating function of genus g ancestor invariants.
The ancestor potential is defined to be the formal expression

AX(t̄, s) := exp
∞

∑
g=0

h̄g−1FX
g (t̄, s).

Note that A depends on s (variables on the Frobenius manifold), in addi-
tion to t̄ = ∑ t̄µ

k Tµzk (variables on the “Fock space”). It is analogous to the
formal descendent potential

DX(t) = exp
∞

∑
g=0

h̄g−1FX
g (t),

where t = ∑µ,k tµ
k ψkTµ and FX

g (t) = ∑n,β〈tn〉g,n,β qβ/n! is the genus g gener-
ating function of the descendent invariants.

Let j be one of the first n marked points such that ψ̄j is defined. Let Dj

be the (virtual) divisor on Mg,n+l(X, β) defined by the image of the gluing
morphism

∑
β′+β′′=β

∑
l′+l′′=l

M0,{j}+l′+•(X, β′)×X Mg,(n−1)+l′′+•(X, β′′)→ Mg,n+l(X, β),

where • represents the gluing point; Mg,(n−1)+l′′+•(X, β′′) carries all first
n marked points except the j-th one, which is carried by M0,{j}+l′+•(X, β′).
Ancestor and descendent invariants are related by the simple geometric
equation

(1.2) (ψj − ψ̄j) ∩ [Mg,n+l(X, β)]vir = [Dj]vir.

This can be easily seen from the definitions of ψ and ψ̄. The morphism π
in (1.1) contracts only rational curves during the processes of forgetful and
stabilization morphisms. The (virtual) difference of ψ and ψ̄ is exactly Dj.

1.2. The mixed invariants. We will consider more general mixed invariants
with mixed ancestor and descendent insertions. Denote by

〈τk1,l̄1 α1, · · · , τkn,l̄n αn〉g,n,β

the invariants with mixed descendent and ancestor insertion ψ
k j
j ψ̄

lj
j ev∗j αj at

the j-th marked point and let

〈τk1,l̄1 α1, · · · , τkn,l̄n αn〉g(s) := ∑
l,β

qβ

l!
〈τk1,l̄1 α1, · · · , τkn,l̄n αn, sl〉g,n+l,β,

〈τk1,l̄1 α1, · · · , τkn,l̄n αn〉g(t̄, s) := ∑
m,l,β

qβ

m!l!
〈τk1,l̄1 α1, · · · , τkn,l̄n αn, t̄m, sl〉g,(n+m)+l,β.

to be the generating functions.
Equation (1.2) can be rephrased in terms of these generating functions.
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Proposition 1.1. In the stable range 2g + n ≥ 3, for (k1, l1) = (k + 1, l),

〈τk+1,l̄ α1, · · · , τkn,l̄n αn〉g(t̄, s)
= 〈τk,l+1 α1, · · · , τkn,l̄n αn〉g(t̄, s)

+ ∑
ν

〈τk α1, Tν〉0(s) 〈τl Tν, · · · , τkn,l̄n αn〉g(t̄, s)
(1.3)

where · · · denotes the same list of mixed insertions.

In fact, only one special type of the mixed invariants will be needed. Let
(X, E) be a smooth pair with j : E ↪→ X a smooth divisor, which we call the
divisor at infinity. At the i-th marked point, if ki 6= 0, then we require that
αi = ε i ∈ j∗H∗(E) ⊂ H∗(X). This type of invariants will be called mixed
invariants of special type and the marked points with ki 6= 0 will be called
marked points at infinity.

For a birational map f : X 99K X′ with exceptional locus Z ⊂ X, a mixed
invariant is said to be of f -special type if α.Z = 0 for every insertion τk,l̄ α

with k 6= 0. When (Xloc, E) comes form the local model of (X, Z), namely
Xloc := Ẽ = PZ(NZ/X ⊕ O) with E being the infinity divisor, these two
notions of special type agree.

Proposition 1.1 will later be used (c.f. Theorem 4.5) in the following set-
ting. Suppose that under a flop f : X 99K X′ we have invariance of ancestor
generating functions. To extend the invariance to allow also descendents
we may reduce the problem to the g = 0 case and with at most one descen-
dent insertion τk α. For local models, it is important that the invariants are
of special type to ensure the invariance.

2. REVIEW OF GIVENTAL’S QUANTIZATION FORMALISM

In this section we recall Givental’s axiomatic Gromov-Witten theory. As
it is impossible to include all background material, this is mainly to fix the
notations. The reader may consult [8, 9, 13] for the details.

2.1. Formal ingredients in the geometric Gromov-Witten theory. For a
projective smooth variety X, Gromov-Witten theory of X consists of the
following ingredients

(i) H := H∗(X, C) is a C-vector space, assumed of rank N. Let {Tµ}N
µ=1

be a basis of H and {sµ}N
µ=1 be the dual coordinates with ∂/∂sµ =

Tµ. Set T1 = 1 ∈ H0(X), the (dual of) fundamental class. H carries
a symmetric bilinear form, the Poincaré pairing,

(·, ·) : H ⊗ H → C.

Define gµν := (Tµ, Tν) and gµν to be the inverse matrix.
(ii) Let Ht :=

⊕∞
k=0 H be the infinite dimensional complex vector space

with basis {Tµψk}. Ht has a natural C-algebra structure:

Tµψk1 ⊗ Tνψk2 7→ (Tµ ∪ Tν)ψk1+k2 .
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Let {tµ
k }, µ = 1, . . . , N, k = 0, . . . , ∞, be the dual coordinates of the

basis {Tµψk}. We note that at each marked point, the descendent
insertion is Ht-valued. Let

t := ∑
k,µ

tµ
k Tµψk

denote a general element in the vector space Ht.
(iii) The generating function of descendents

FX
g (t) := ∑

n,β

qβ

n!
〈t, . . . , t〉g,n,β

is a formal function on Ht with coefficient in the Novikov ring. (The
convergence holds for local models, c.f. Section 3, which is the only
case we need in the quantization process.)

(iv) H carries a (big quantum cohomology) ring structure. Let sµ = tµ
0

and F0(s) = F0(t)|tk=0, ∀ k>0. The ring structure is defined by

Tµ1 ∗s Tµ2 := ∑
ν,ν′

∂3F0(s)
∂sµ1 ∂sµ2 ∂sν

gνν′Tν′ .

1 is the identity element of the ring. In the subsequent discussions,
the subscript s of ∗s will be dropped when the context is clear.

(v) The Dubrovin connection ∇z on the tangent bundle TH is defined
by

∇z := d− z−1 ∑
µ

dsµ(Tµ∗).

The quantum cohomology differential equation

(2.1) ∇zS = 0

has a fundamental solution S = (Sµ,ν(s, z−1)), an N × N matrix-
valued function, in (formal) power series of z−1 satisfying the con-
ditions

(2.2) S(s, z−1) = Id + O(z−1) and S∗(s,−z−1)S(s, z−1) = Id,

where ∗ denotes the adjoint with respect to (·, ·).
(vi) The non-equivariant genus zero Gromov-Witten theory is graded,

i.e. with a conformal structure. The grading is determined by an Eu-
ler field E ∈ Γ(TX),

(2.3) E = ∑
µ

(1− 1
2

deg Tµ)sµ ∂

∂sµ
+ c1(TX).
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2.2. Semisimple Frobenius manifolds. The concept of Frobenius mani-
folds was originally introduced by B. Dubrovin. We assume that the read-
ers are familiar with the definitions of the Frobenius manifolds. See [10]
Part I for an introduction. The quantum product ∗, together with Poincaré
pairing, and the special element 1, defines on H a Frobenius manifold struc-
ture (QH, ∗).

A point s ∈ H is called a semisimple point if the quantum product on the
tangent algebra (TsH, ∗s) at s ∈ H is isomorphic to

⊕N
1 C as an algebra.

(QH, ∗) is called semisimple if the semisimple points are (Zariski) dense in
H. If (QH, ∗) is semisimple, it has idempotents {εi}N

1

εi ∗ εj = δijεi.

defined up to SN permutations. The canonical coordinates {ui}N
1 is a local

coordinate system on H near s defined by ∂/∂ui = εi. When the Euler field
is present, the canonical coordinates are also uniquely defined up to signs
and permutations. We will often use the normalized form ε̃i = εi/

√
(εi, εi).

Lemma 2.1. {εi} and {ε̃i} form orthogonal bases.

Proof. (εi, εj) = (εi ∗ εi, εj) = (εi, εi ∗ εj) = (εi, δijεi) = δij(εi, εi). �

When the quantum cohomology is semisimple, the quantum differential
equation (2.1) has a fundamental solution of the following type

R(s, z) := Ψ(s)−1R(s, z)eu/z,

where (Ψµi) := (Tµ, ε̃i) is the transition matrix from {ε̃i} to {Tµ}; u is the
diagonal matrix (uij) = δijui. The main information of R is carried by
R(s, z), which is a (formal) power series in z. One notable difference be-
tween S(s, z−1) and R(s, z) is that the former is a (formal) power series in
z−1 while the latter is a (formal) power series in z. See [5] and Theorem 1 in
Chapter 1 of [10].

2.3. Preliminaries on quantization. Let Hq := H[z]. Let {Tµzk}∞
k=0 be a

basis of Hq, and {qµ
k } the dual coordinates. We define an isomorphism of

Hq to Ht as an affine vector space via a dilaton shift “t = q + z1”:

(2.4) tµ
k = qµ

k + δµ1δk1.

The cotangent bundle H := T∗Hq is naturally isomorphic to the H-valued
Laurent series in z−1, H[[z−1]]. It has a natural symplectic structure

Ω = ∑
k,µ,ν

gµν dpµ
k ∧ dqν

k

where {pµ
k } are the dual coordinates in the fiber direction of H in the nat-

ural basis {Tµ(−z)−k−1}∞
k=0. In this way,

Ω( f , g) = Resz=0( f (−z), g(z)).
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To quantize an infinitesimal symplectic transformation on (H , Ω), or its
corresponding quadratic hamiltonians, we recall the standard Weyl quanti-
zation. An identification H = T∗Hq of the symplectic vector space H (the
phase space) as a cotangent bundle of Hq (the configuration space) is called a
polarization. The “Fock space” will be a certain class of functions f (h̄, q)
on Hq (containing at least polynomial functions), with additional formal
variable h̄ (“Planck’s constant”). The classical observables are certain func-
tions of p, q. The quantization process is to find for the phase space of the
“classical mechanical system” on (H , Ω) a “quantum system” on the Fock
space such that the classical observables, like the hamiltonians h(q, p) on
H , are quantized to become operators ĥ(q, ∂/∂q) on the Fock space.

Let A(z) be an End(H)-valued Laurent formal series in z satisfying

Ω(A f , g) + Ω( f , Ag) = 0,

for all f , g ∈ H . That is, A(z) defines an infinitesimal symplectic transfor-
mation. A(z) corresponds to a quadratic “polynomial” hamiltonian 1 P(A)
in p, q

P(A)( f ) :=
1
2

Ω(A f , f ).

Choose a Darboux coordinate system {qi
k, pi

k} so that Ω = ∑ dpi
k ∧ dqi

k. The
quantization P 7→ P̂ assigns

1̂ = 1, p̂i
k =
√

h̄
∂

∂qi
k
, q̂i

k = qi
k/
√

h̄,

p̂i
kpj

l = p̂i
kp̂j

l = h̄
∂

∂qi
k

∂

∂qj
l

,

p̂i
kqj

l = qj
l

∂

∂qi
k
, q̂i

kqj
l = qi

kqj
l/h̄,

(2.5)

In summary, the quantization is the process

A 7→ P(A) 7→ P̂(A)
inf. sympl. transf. 7→ quadr. hamilt. 7→ operator on Fock sp..

It can be readily checked that the first map is a Lie algebra isomorphism:
The Lie bracket on the left is defined by [A1, A2] = A1A2 − A2A1 and the
Lie bracket in the middle is defined by Poisson bracket

{P1(p, q), P2(p, q)} = ∑
k,i

∂P1

∂pi
k

∂P2

∂qi
k
− ∂P2

∂pi
k

∂P1

∂qi
k
.

The second map is close to be a Lie algebra homomorphism. Indeed

[P̂1, P̂2] = ̂{P1, P2}+ C (P1, P2),

1Due to the nature of the infinite dimensional vector spaces involved, the “polynomials”
here might have infinite many terms, but the degrees in p and q are at most 2.
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where the cocycle C , in orthonormal coordinates, vanishes except

C (pi
kpj

l , qi
kqj

l) = −C (qi
kqj

l , pi
kpj

l) = 1 + δijδkl .

Example 2.2. Let dim H = 1 and A(z) be multiplication by z−1. It is easy to
see that A(z) is infinitesimally symplectic.

P(z−1) =− q2
0

2
−

∞

∑
m=0

qm+1pm

P̂(z−1) =− q2
0

2
−

∞

∑
m=0

qm+1
∂

∂qm
.

(2.6)

Note that one often has to quantize symplectic transformations. Follow-
ing the common practice in physics, define

(2.7) êA(z) := eÂ(z),

for A(z) an infinitesimal symplectic transformation.

2.4. Ancestor potentials via quantization. Let N be the rank of H = H∗(X)
and DN(t) = ∏N

i=1 Dpt(ti) be the descendent potential of N points, where

Dpt(ti) ≡ Apt(ti) := exp
∞

∑
g=0

h̄g−1Fpt
g (ti)

is the total descendent potential of a point and ti = ∑k ti
kzk.

Suppose that (QH, ∗) is semisimple, then the ancestor potential can be
reconstructed from the DN(t) via the the quantization formalism.

Since {ε̃i} defines an orthonormal basis for TsH ∼= H (for s a semisimple
point), the dual coordinates (pi

k, qi
k) of the basis {ε̃izk}k∈Z for H form a

Darboux coordinate system. The coordinate system {ti
k} is related to {qi

k}
by the dilaton shift (2.4). Note that ∂/∂qi

k = ∂/∂ti
k.

The following beautiful formula was first formulated by Givental [5].
Many special cases have since been solved in [1, 9, 6]. It was completely
established by C. Teleman in a recent preprint [15]. In this paper, we will
only need Givental’s conjecture for smooth semi-Fano toric varieties (c.f. [6]).

Theorem 2.3. For X a smooth variety with semisimple (QH(X), ∗),

(2.8) AX(t̄, s) = ec̄(s)Ψ̂−1(s)R̂X(s, z)eû/z(s)DN(t),

where c̄(s) = 1
48 log det(εi, εj).

Note that it is not very difficult to check that log RX(s, z) defines an infin-
itesimal symplectic transformation. See e.g. [5, 10]. R̂X(s, z) is then defined
via (2.7). By Example 2.2, eû/z is also well-defined. Since the quantization
involves only the z variable, Ψ̂−1(s) really is the transformation from the
coordinates with respect to the normalized canonical frame to flat coordi-
nates. No quantization is needed.
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Remark 2.4. The operator eû/z can be removed from the above expression.
It is shown in [5] that the string equation implies that eû/zDN = DN .

3. ANALYTIC CONTINUATIONS

We discuss the issues of analyticity of the Frobenius manifolds and ana-
lytic continuations involved in the study of the flop f : X 99K X′.

3.1. Review of the genus zero theory. Let f : X 99K X′ be a simple Pr

flop with F being the graph correspondence. This subsection rephrases the
analytic continuation of big quantum rings proved in [11] in more algebraic
terms.

Let NE f be the cone of curve classes β ∈ NE(X) with F β ∈ NE(X′),
i.e. the classes which are effective on both sides. Let

f(q) =
q

1− (−1)r+1q

be the rational function coming from the generating function of three points
Gromov-Witten invariants attached to the extremal ray ` ⊂ Z ∼= Pr with
positive degrees. Namely for any i, j, k ∈N with i + j + k = 2r + 1,

f(q`) = ∑
d≥1
〈hi, hj, hk〉0,3,d` qd`,

where h denotes a class in X which restricts to the hyperplane class of Z.
Gromov-Witten invariants take value in the Novikov ring

N(X) = ̂C[NE(X)]

(formal series in qβ, β ∈ NE(X)), which is the I-adic completion with I
being the maximal ideal generated by NE(X)\{0}. 2

Define the ring

(3.1) R = Ĉ[NE f ][f(q`)],

which can be regarded as certain algebraization of N(X) in the q` vari-
able. Notice that R is canonically identified with its counterpart R ′ =
Ĉ[NE′f ][f(q`′)] for X′ under F since F NE f = NE′f and

(3.2) F f(q`) = (−1)r − f(q`′)

(via f(q) + f(q−1) = (−1)r).

Theorem 3.1. The genus zero n-point functions with n ≥ 3 lie in R:

〈α〉X ∈ R

for all α ∈ H∗(X)⊕n. Moreover F 〈α〉X = 〈F α〉X′ in R ′.

2The notation ˆ in this section always means completion in the I-adic topology and
should not be confused with quantization used in the previous section.
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Proof. This is the main result of [11] except the statement that 〈α〉X ∈ R.
This in tern will follow from a closer look at the proof of F 〈α〉X = 〈F α〉X′

give there. The argument below assumes familiarity with [11].
The degeneration analysis in §4 of [11] implies that

〈α〉•X = ∑
µ

m(µ) ∑
I
〈α1 | ε I , µ〉•(Y,E)〈α2 | εI , µ〉•(Ẽ,E),

which decomposes absolute invariants into relative ones on the blow-up Y =
BlZX = Γ̄ f ⊂ X × X′ and on the local model Ẽ = PZ(NZ/X ⊕ O); here
〈·〉• denotes invariants with possibly disconnected domain curves. This
formula, which involves deformation to the normal cone, will be reviewed in
Section 5 where a generalization to all genera is presented.

Under the projections φ : Y → X and φ′ : Y → X′, the graph corre-
spondence is given by F = φ′∗ ◦ φ∗. The variable qβ1 for β1 ∈ NE(Y) is
identified with qφ∗β1 ∈ NE(X). If qβ1 appears in a summand with contact
type µ, then (E.β1) = |µ| ≥ 0 (the contact order). Also if `′Y is the ruling on
E ∼= Pr ×Pr ⊂ Y which projects to `′ ⊂ X′, then

φ∗φ∗β1 = β1 + (E.β1)`′Y

(since NE/Y
∼= O(−1,−1) and (E.φ∗φ∗β1) = 0). This implies that

F φ∗β1 = φ′∗β1 + |µ|`′ ∈ NE(X′).

Hence β1 ∈ NE f and 〈α1 | ε I , µ〉•(Y,E) ∈ Ĉ[NE f ].
To compare F 〈α〉•X and 〈F α〉•X′ , by [11], Proposition 4.4 we may as-

sume that α1 = α′1 and α′2 = F α2. Thus the problem is reduced to the local
model Ẽ which has NE(Ẽ) = Z+` + Z+γ with γ being the fiber line class
of Ẽ→ Z. Denote β = d` + d2γ ∈ NE(X).

The relative invariants 〈α2 | εI , µ〉•(Ẽ,E) are converted to the absolute de-
scendent invariants of f -special type on Ẽ by solving triangular linear sys-
tems arising from the degeneration formula inductively (c.f. Proposition 5.3
where this is generalized to the case allowing also ancestors in α2).

Now H∗(Ẽ) = Z[h, ξ]/〈hr+1, (ξ− h)r+1ξ〉 is generated by divisors where
h is the hyperplane class of Z and ξ is the class of E. By a virtual dimension
count, for each α ∈ τ•H∗(Ẽ)⊕n, 〈α〉Ẽβ 6= 0 for at most one d2. Then the pro-
cess in [11] (§5, Theorem 5.6) via the reconstruction theorem and induction
on d2 ≥ 0 shows that there are indeed only two basic relations which to-
gether generate all the analytic continuations and lead to the F -invariance
theorem.

The first relation is (3.2), which is the origin of analytic continuation: For
d2 = 0, the 3-point functions for extremal rays is given by f. The constant
(−1)r is responsible for the topological defect. Another relation comes from
the quasi-linearity F 〈τkξa〉X = 〈τkξ ′F a〉X′ for one point f -special invariants
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([11], Lemma 5.4). This is an identity of small J functions in C[NE′f ]:

F J Ẽ.ξa = J Ẽ′ .ξ ′F a

where no analytic continuation is needed.
For D ∈ Pic(Ẽ), the power operator δD is defined by δDqβ = (D.β)qβ. Then

under the basis {h, ξ} of H2(Ẽ) we have dual basis {`, γ} of H2(Ẽ) and

(3.3) δ := δh = q` d
dq`

.

The reconstruction shows that the desired analytic continuations arise
from finite C[NE f ]-linear combinations of δmf’s with m ≥ 0.

It remains to show that δmf is a polynomial in f. This follows easily from

δf = f + (−1)r+1f2

and δ(f1f2) = (δf1)f2 + f1δf2 by induction on m. �

3.2. Integral structure on local models. For X = Ẽ, the second half of
above proof shows that

(3.4) 〈α〉 ∈ C[NE f ][f] =: Rloc

without the need of taking completion, where NE f = Z+γ + Z+(γ + `).
In fact for a given set of insertions α and genus g, the virtual dimension

count shows that the contact weight d2 := (E.β) is fixed among all β =
d1` + d2γ in the series 〈α〉Xg . Hence for g = 0 we must have

〈α〉X = qd2γ(p0(f) + q`p1(f) + · · ·+ qd2`pd2(f))

for certain polynomials pi(f) ∈ Q[f].
In particular 〈α〉 is an analytic function over the extended Kähler cone ω ∈

KC
X ∪F−1KC

X′ (where KC
X := H1,1

R (X) + iKX is the complexified Kähler cone)
via the identification 3

(3.5) qβ = e2πi(ω.β).

Thus analytic continuation can be taken in the traditional complex analytic
sense or as isomorphisms in the ring Rloc

∼= R ′loc.

3.3. Analytic structure on the Frobenius manifolds. The Frobenius man-
ifold corresponding to X is a priori a formal scheme, given by the formal
completing ĤX of H∗(X, C) at the origin, with values in the Novikov ring.
The divisor axiom implies that one may combine the H1,1(X) directions of

3In string theory, the identification of weights qβ = e2πi(ω.β) is essential in matching the
A model and B model moduli spaces in mirror symmetry (c.f. [3]). It is generally believed
that the GW theory converges in the “large radius limit”, i.e. when Im ω is large.
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the Frobenius manifold and the Novikov variables into a formal completion
at the boundary point q = 0 of

(3.6)
H1,1(X)

H1,1(X) ∩ (2πi.H2(X, Z))
⊂ H2(X, C)

2πiH2(X, Z)
∼= (C×)h2

.

Indeed, let s = s′ + s1 be a point in the Frobenius manifold with s1 ∈
H2(X, C). The divisor axiom says that

(3.7) 〈α〉β(s′ + s1) qβ = 〈α〉β(s′) qβe(s1.β).

Compared with (3.5), this suggests an identification of qβ with e(s1.β) which
leads to (3.6). This identification can be done at the analytic level when the
convergence of big quantum ring is known. In practice when the conver-
gence is known only in some variables qβ’s, partial identification can still
be made in certain H1,1 directions.

Let f : X 99K X′ be a simple Pr flop and h be a divisor class dual to the
extremal ray `, i.e. (h.`) = 1. Then H2(X, C) = Ch ⊕ H2(X, C)⊥` . Theo-
rem 3.1 gives an analytic structure on ĤX in the h-direction:

Corollary 3.2. (i) The Frobenius manifold structure on ĤX can be extended to

HX := Ĥ⊥`
X × (P1

q` \ (−1)r+1).

(ii) HX ∼= HX′ .
(iii) If X is the local model, HX is an analytic manifold.

Proof. Theorem 3.1 says that, as polynomial functions of f, all invariants are
defined on f ∈ C. Equivalently, as rational functions of q`, all invariants are
defined on P1 \ (−1)r+1. For s1 ∈ H2(X, C), s1 = th + h′ with (h′.`) = 0.
Then the identification q` = e(s1.`) = e(th,`) = et in (3.1) is used to replace
Ch. This proves (i). (ii) follows from (i), and (iii) from Section 3.2 �

Corollary 3.2 and results of the previous subsections show that the Frobe-
nius manifold structures on the quantum cohomology of X and X′ are iso-
morphic. The former is a series expansion of analytic functions at q` = 0,
and the latter at q` = ∞. Considered as a one-parameter family

HX → P1
q` \ (−1)r+1,

it produces a family of product structure on Ĥ⊥`
X ⊗ Ĉ[NE f ]. At two spe-

cial points 0 and ∞, the Frobenius structure specializes to the big quantum
cohomology modulo extremal rays of X and of X′ respectively. The term
“analytic continuation” used in this paper can be understood in this way.

4. LOCAL MODELS

We move to the study of local models. The semisimplicity of the Frobe-
nius manifolds and the quantization formalism are used to reduce the in-
variance of Gromov-Witten theory to the semi-classical (genus zero) case.
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4.1. Semisimplicity of big quantum ring for local models. Toric varieties
admits a nice big torus action and its equivariant cohomology ring is al-
ways semisimple, hence as a deformation the equivariant big quantum
cohomology ring (the Frobenius manifold) is also semisimple. Givental’s
quantization formalism works in the equivariant setting, hence one way to
prove the higher genus invariance for local models is to extend results in
[11] to the equivariant setting. This can in principle be done, but here we
take a direct approach which requires no more work.

Lemma 4.1. For X = PPr(O(−1)⊕(r+1) ⊕O), QH∗(X) is semisimple.
Proof. By [3], the proof of Proposition 11.2.17 and [11], Lemma 5.2, the small
quantum cohomology ring is given by Batyrev’s ring (though X is only
semi-Fano). Namely for q1 = q` and q2 = qγ,

QH∗small(X) ∼= C[h, ξ][q1, q2]/(hr+1 − q1(ξ − h)r+1, (ξ − h)r+1ξ − q2).

Solving the relations, we get the eigenvalues of the quantum multiplica-
tions h∗ and ξ∗:

(4.1) h = η jωiq
1

r+1
1 q

1
r+2
2 (1 + ωiq

1
r+1
1 )−

1
r+2 , ξ = η jq

1
r+2
2 (1 + ωiq

1
r+1
1 )

r+1
r+2

for i = 0, 1, · · · , r and j = 0, 1, · · · , r + 1. where ω and η are the (r + 1)-th
and the (r + 2)-th root of unity respectively. As these eigenvalues of h∗
(resp. ξ∗) are all different, we see that h∗ and ξ∗ are semisimple operators,
hence QH∗small(X) is semisimple.

This proves that the formal Frobenius manifold (QH∗, ∗) is semisimple
at the origin s = 0. Since semisimplicity is an open condition, the formal
Frobenius manifold QH∗(X) is also semisimple. �

Remark 4.2. The Batyrev ring for any smooth projective toric variety, whether
or not equal to the small quantum ring, is always semisimple.

4.2. Invariance of mixed invariants of special type.

Proposition 4.3. For the local models, the correspondence F for a simple flop
induces, after the analytic continuation, an isomorphism of the ancestor potentials.
Proof. Since a flop induces K-equivalence, by (2.3) the Euler vector fields of
X and X′ are identified under F . By Theorem 3.1 and Lemma 4.1, X and X′
give rise to isomorphic semisimple conformal formal Frobenius manifolds
over R (or rather Rloc):

QH∗(X) ∼= QH∗(X′)

under F . The first statement then follows from Theorem 2.3, the quantiza-
tion formula, since all the quantities involved are uniquely determined by
the underlying abstract Frobenius structure.

To be more explicit, to compare FAX with AX′ is equivalent to compare
F (Ψ̂−1

X R̂X)eû/z with Ψ̂−1
X′ R̂X′eû′/z, and F c̄ with c̄′. Recall that

εi := ∂ui , ε̃i :=
εi√

(εi, εi)
.
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Lemma 4.4. F sends canonical coordinates on X to canonical coordinates on X′:
F εi = ε′i , F ε̃i = ε̃′i . Moreover, c̄, Ψ and u transform covariantly under F .

Proof. As F preserves the big quantum product, F sends idempotents {εi}
to idempotents {ε′i}. Since the canonical coordinates are uniquely defined
for conformal Frobenius manifolds (up to SN permutation which is fixed by
F ), F takes canonical coordinates on X to those on X′. Furthermore, F
preserves the Poincaré pairing [11], hence that F ε̃i = ε̃′i .

The F covariance of c̄(s) = 1
48 log det(εi, εj), the matrix uij = (δijui) and

the matrix Ψµi = (Tµ, ε̃i) also follow immediately. For example,

F Ψµi = (F Tµ, F ε̃i)

again by the F covariance of Poincaré pairing. �

The lemma implies that the Darboux coordinate systems on H X and
H X′ defined in Section 2.4 via ε̃i and ε̃′i respectively are compatible un-
der F . By the definition of the quantization process (2.5), which assigns
differential operators ∂/∂qi

k’s in an universal manner under a Darboux co-
ordinate system, it clearly commutes with F . It is thus enough to prove
the invariance of the semi-classical counterparts, or equivalently the “co-
variance” of the corresponding matrix functions, under F . Note that all
the invariance and covariance are up to an analytic continuation.

Therefore, one is left with the proof of the covariance of the R matrix
under F , after analytic continuation. Namely F R(s) = R′(F s).

This follows from the uniqueness of R for semisimple formal conformal
Frobenius manifolds. To be explicit, recall that in the proof of [10], Theorem
1, the formal series R(s, z) = ∑∞

n=0 Rn(s)zn of the R matrix is recursively
constructed by R0 = Id and the following relation in canonical coordinates:

(4.2) (Rn)ij(dui − duj) = [(ΨdΨ−1 + d)Rn−1]ij.

Applying F to it, we get F Rn = R′n by induction on n. �

In order to generalize Proposition 4.3 to simple flops of general smooth
varieties, which will be carried out in the next section by degeneration
analysis, we have to allow descendent insertions at the infinity marked
points, i.e. those marked points where the cohomology insertions come
from j∗H∗(E) ⊂ H∗(X).

Theorem 4.5. For the local models, the correspondence F for a simple flop in-
duces, after the analytic continuation, an isomorphism of the generating functions
of mixed invariants of special type in the stable range.

Proof. Using Proposition 4.3 and 1.1 and by induction on the power k of
descendent, the theorem is reduced to the case of g = 0 and with exactly
one descendent insertion. It is of the form 〈τkα, Tν〉0(s) with k ≥ 0 and by
our assumption α ∈ j∗H∗(E). This series is a formal sum of subseries

〈τkα, Tν, Tµ1 , · · · Tµl 〉0,2+l
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with l ≥ 0 (n = 2 + l ≥ 2), which are sums over β ∈ NE(Ẽ). Each such
series supports a unique d2 ≥ 0 in β = d1` + d2γ.

If d2 = 0 then the series (resp. its counterpart in X′ = Ẽ′ which supports
the same d2) is trivial for d1 ≥ 1 (resp. d′1 ≥ 1 where β′ = d′1`

′) since α is
supported in E and the extremal curves are supported in Z (resp. Z′).

For the remaining case β = 0, Since M0,n(X, 0) ∼= M0,n × X, we have

(4.3) 〈τka1, a2, · · · , an〉0,n,0 =
∫

M0,n

ψk
1 ×

∫
X

a1 · · · an.

It is non-trivial only if k = dim M0,n = n− 3, and then∫
X

αTνTµ1 · · · Tµl =
∫

X′
F αF TνF Tµ1 · · ·F Tµl

since the flop f restricts to an isomorphism on E.
If d2 > 0, the invariance follows from [11], Theorem 5.6. �

We will generalize the theorem into the form of Theorem 0.2 by removing
the local model condition after we discuss the degeneration formula.

Remark 4.6. The proof of [11], Theorem 5.6 is by induction on d2 and n,
which is based on (1) the reconstruction theorem, (2) the case d2 = 0 and
(3) the case n = 1 (quasi-linearity). However the discussion there on d2 = 0
was not explicitly addressed. In particular, β = 0 terms was ignored. In
that case, the f -special invariants are either zero or reduced to F -invariant
constants as above. The arguments there are thus valid with this noted.

Remark 4.7. By section 4.1 and the proof of Proposition 4.3, the canonical
coordinates ui’s, idempotents εi’s, hence the transition matrix Ψ and the
R matrix all lie in some integral extension R̃loc of Rloc. It is interesting to
know whether all genus g ancestor n-point generating functions take value
in R̃loc and F 〈τl̄ α〉Xg = 〈τl̄ F α〉X′g in R̃loc. This is plausible from Theorem
2.3 since the quantization process requires no further extensions. In fact
explicit calculation suggests that 〈τl̄ α〉Xg might belong to Rloc.

5. DEGENERATION ANALYSIS

Let f : X 99K X′ be a simple Pr flop with F being the graph correspon-
dence. To prove Theorem 0.2, we need to show that

F 〈τk,l̄ α〉Xg = 〈τk,l̄ F α〉X′g

up to analytic continuation, for all τk,l̄ α = (τk1,l̄1 α1, . . . , τkn,l̄n αn) being of
f -special type (in the stable range 2g + n ≥ 3).

We follow the strategy employed in [11], §4 to apply the degeneration
formula [12] to reduce the problem to local models. The two changes are

(1) to generalize primary invariants to ancestors (and descendents);
(2) to generalize genus zero invariants to arbitrary genus.
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(2) is almost immediate while (1) needs more explanations. We will focus
on the necessary changes and refer to [11], §4 for complementary details.

5.1. Mixed relative invariants and the degeneration formula. Given a pair
(Y, E) with E ↪→ Y a smooth divisor, let Γ = (g, n, β, ρ, µ) with µ = (µi) ∈
Nρ a partition of (β.E) = |µ| := ∑

ρ
i=1 µi. For A ∈ H∗(Y)⊕n, k, l ∈ Zn

+ and
ε ∈ H∗(E)⊕ρ, we require that 2g + n + ρ ≥ 3 if l 6= 0, and then the mixed
relative invariant of stable maps with topological type Γ (i.e. with contact
order µi in E at the i-th contact point) is given by

〈τk,l̄ A | ε, µ〉(Y,E)
Γ =

∫
[MΓ(Y,E)]virt

( n

∏
j=1

ψ
k j
j ψ̄

lj
j e∗Y,j A

j
)
∪ e∗Eε,

where eY,j : MΓ(Y, E) → Y, eE : MΓ(Y, E) → Eρ are evaluation maps on
marked points and contact points respectively.

The descendent ψj is defined in the usual manner as c1(Lj), with Lj →
MΓ(Y, E) being the cotangent line at the j-th marked point for j = 1, . . . , n.

The ancestors are defined by ψ̄j := σ∗Γ ψj for j = 1, . . . , n, where

(5.1) σΓ : MΓ(Y, E)−→Mg,n+ρ

is the stabilization morphism which forgets the maps. Now ψj = c1(Lj)
with Lj → Mg,n+ρ. We consider ancestors only at the n marked points.

If Γ = äπ Γπ, the relative invariants with possibly disconnected domain
curves are defined by the product rule:

〈τk,l̄ A | ε, µ〉•(Y,E)
Γ = ∏π

〈(τk,l̄ A)π | επ, µπ〉(Y,E)
Γπ .

It is set to be zero if some ancestor in the right hand side is undefined. This
is the case when there is a π with lΓπ 6= 0 but gΓπ = 0, nΓπ = ρΓπ = 1.

Consider a degeneration W → A1 of a trivial family with Wt ∼= X for t 6=
0 and W0 = Y1 ∪ Y2 a simple normal crossing. All classes α ∈ H∗(X, Z)⊕n

have global lifting and for each lifting the restriction α(0) on W0 is defined.
Let ji : Yi ↪→ W0 be the inclusion maps for i = 1, 2. The lifting can be
encoded by (α1, α2) with αi = j∗i α(0).

Let {ε i} be a basis of H∗(E) with {εi} its dual basis. {ε I} forms a basis of
H∗(Eρ) with dual basis {εI} where |I| = ρ, ε I = ε i1 ⊗ · · · ⊗ ε iρ

.
The degeneration formula expresses the absolute invariants of X in terms

of the relative invariants of the two smooth pairs (Y1, E) and (Y2, E):

Theorem 5.1 ([12]). Assume that 2g + n ≥ 3 if l 6= 0, then

(5.2) 〈τk,l̄ α〉Xg,n,β = ∑
I

∑
η∈Ωβ

Cη〈τ1
k,l̄ α1 | ε I , µ〉•(Y1,E)

Γ1
〈τ2

k,l̄ α2 | εI , µ〉•(Y2,E)
Γ2

.

Here η = (Γ1, Γ2, Iρ) is an admissible triple which consists of (possibly

disconnected) topological types Γi = ä|Γi |
π=1 Γπ

i with the same partition µ
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of contact order under the identification Iρ of contact points. The marked
points in Γ1 and Γ2 are labeled by x1, x2, . . . , xn and the gluing

Γ1 +Iρ Γ2

has type (g, n, β) and is connected. In particular, ρ = 0 if and only if that
one of the Γi is empty. The total genus gi, total number of marked points
ni and the total degree βi ∈ NE(Yi) satisfy the splitting relations g− 1 =
g1 − |Γ1|+ g2 − |Γ2|+ ρ, n = n1 + n2, and (β1, β2) is a lifting of β.

The constants Cη = m(µ)/|Aut η|, where m(µ) = ∏ µi and Aut η =
{ σ ∈ Sρ | ησ = η }. We denote by Ω the set of equivalence classes of all
admissible triples; by Ωβ and Ωµ the subset with fixed degree β and fixed
contact order µ respectively.

Notation: Throughout this section, we use the convention that in (5.2)
the valid insertions τk j,l̄j

(αi)j, j ∈ {1, 2, . . . , n} used in 〈τi
k,l̄ αi | ε, µ〉•(Yi ,E)

Γi

correspond to those marked points xj’s appeared in Γi.

Proof. Theorem 5.1 follows from the degeneration formula for virtual moduli
cycles proved by Li in [12], with special attention paid on ancestors:

[MΓ(W0)]virt = ∑
η∈Ω

CηΦη∗∆!
(
[MΓ1(Y1, E)]virt × [MΓ2(Y2, E)]virt

)
where ∆ : Eρ × Eρ → Eρ is the diagonal. The descendents obey the same
formula clearly. For ancestors, we investigate the gluing diagram for η:

(5.3) MΓ1(Y1, E)×Eρ MΓ2(Y2, E)
Φη //

σ1×σ2
��

MΓ(W0)

σ
��

MΓ◦1 ×MΓ◦2

Gη // Mg,n

where MΓ◦i is the moduli of stable curves with topological type Γi forgetting
βi. The vertical maps are stabilization’s which define ancestors.

When the commutative diagram (5.3) exits, by the functoriality of the
construction of moduli cycles, the ancestors obey the formula on that com-
ponent as well. This applies to those η even if some of the connected com-
ponents in MΓ◦i do not exist — as long as no ancestors are attached to those
(unstable) marked points. In fact, Φ∗ησ∗ψj is then easily seen to be the an-
cestor of the component MΓπ

i
(Yi, E) containing the marked point xj.

It remains to consider the case that there is a Γπ
i with a marked point xj

such that lj 6= 0, gΓπ
i

= 0 and nΓπ
i

= ρΓπ
i

= 1. We need to show that the
corresponding contribution vanishes. But then it is clear that Φ∗ησ∗ψj = 0
on MΓπ

i
(Yi, E) since Φ∗ησ∗Lj is trivial there. �
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5.2. Reduction to relative local models. The first step is to apply deforma-
tion to the normal cone

W = BlZ×{0}X×A1 → A1.

W0 = Y1 ∪ Y2, Y1 = Y = BlZX
φ→X and Y2 = Ẽ = PZ(NZ/X ⊕ O)

p→ Z.
E = Y ∩ Ẽ is the φ exceptional divisor as well as the infinity divisor of Ẽ.

Similar construction applies to X′:

W ′ = BlZ′×{0}X
′ ×A1 → A1.

W ′0 = Y′1 ∪Y′2, Y′1 = Y′ = BlZ′X′
φ′→X′, Y′2 = Ẽ′ = PZ′(NZ′/X′ ⊕O)

p′→ Z′ and
E′ = Y′ ∩ Ẽ′. By the construction of Pr flops we have (Y, E) = (Y′, E′). For
simple Pr flops we even have an abstract isomorphism Ẽ ∼= Ẽ′ as both are
PPr(O(−1)⊕(r+1)⊕O). However W0 6∼= W ′0 since the gluing of Ẽ to Y along
E ∼= Pr ×Pr differs from the one of Ẽ′, with the Pr factors switched.

In fact, the flop f induces floc : Xloc = Ẽ 99K X′loc = Ẽ′, the projective
local model of f , which is again a simple Pr flop.

Define the generating series for genus g (connected) relative invariants

(5.4) 〈A | ε, µ〉(Ẽ,E)
g := ∑

β2∈NE(Ẽ)

1
|Aut µ| 〈A | ε, µ〉(Ẽ,E)

g,β2
qβ2

and the one for all genera with possibly disconnected domain curves

(5.5) 〈A | ε, µ〉•(Ẽ,E) := ∑
Γ; µΓ=µ

1
|Aut Γ| 〈A | ε, µ〉•(Ẽ,E)

Γ qβΓ
h̄gΓ−|Γ|.

Here for connected invariants of genus g we assign the h̄-weight h̄g−1, while
for disconnected ones we simply assign the product weights.

Proposition 5.2 (Reduction to relative local models). To prove

F 〈τk,l̄ α〉Xg = 〈τk,l̄ F α〉X′g

for all α ∈ H∗(X)⊕n and k, l ∈ Zn
+, it suffices to show

F 〈τk,l̄ A | ε, µ〉(Ẽ,E)
g0 = 〈τk,l̄ F A | ε, µ〉(Ẽ′,E)

g0

for all A ∈ H∗(Ẽ)⊕n, k, l ∈ Zn
+, ε ∈ H∗(E)⊕ρ, contact type µ, and all g0 ≤ g.

Proof. For the n-point mixed generating function

〈τk,l̄ α〉X = ∑
g
〈τk,l̄ α〉Xg h̄g−1 = ∑

g; β∈NE(X)
〈τk,l̄ α〉Xg,β qβ h̄g−1,
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the degeneration formula gives

〈τk,l̄ α〉X

= ∑
β∈NE(X)

∑
η∈Ωβ

∑
I

Cη〈τ1
k,l̄ α1 | ε I , µ〉•(Y1,E)

Γ1
〈τ2

k,l̄ α2 | εI , µ〉•(Y2,E)
Γ2

qφ∗β h̄g−1

= ∑
µ

∑
I

∑
η∈Ωµ

Cη

(
〈τ1

k,l̄ α1 | ε I , µ〉•(Y1,E)
Γ1

qβ1 h̄gΓ1−|Γ1|
)

×
(
〈τ2

k,l̄ α2 | εI , µ〉•(Y2,E)
Γ2

qβ2 h̄gΓ2−|Γ2|
)

h̄ρ,

where (α1, α2) ∈ H∗(Y1)⊕n × H∗(Y2)⊕n is any cohomology lifting of α and
we have used g− 1 = ∑i(gΓi − |Γi|) + ρ. Notice that β = φ∗β1 + p∗β2 and
we identify qβ1 = qφ∗β1 , qβ2 = qp∗β2 throughout our degeneration analysis.

We consider also absolute invariants 〈τk,l̄ α〉•X with product weights in
h̄. Then by comparing the order of automorphisms,

(5.6) 〈τk,l̄ α〉•X = ∑
µ

m(µ) ∑
I
〈τ1

k,l̄ α1 | ε I , µ〉•(Y1,E)〈τ2
k,l̄ α2 | εI , µ〉•(Y2,E) h̄ρ.

To compare F 〈τk,l̄ α〉•X and 〈τk,l̄ F α〉•X′ , by [11], Proposition 4.4, we may
assume that α1 = α′1 and α′2 = F α2. This choice of cohomology lifting
identifies the relative invariants of (Y, E) and those of (Y′, E′) = (Y, E)
with the same topological types. It remains to compare

〈τ2
k,l̄ α2 | εI , µ〉•(Ẽ,E) and 〈τ2

k,l̄ α2 | εI , µ〉•(Ẽ′,E).

We further split the sum into connected invariants. Let Γπ be a connected
part with the contact order µπ induced from µ. Denote P : µ = ∑π∈P µπ a
partition of µ and P(µ) the set of all such partitions. Then

〈τk,l̄ A | ε, µ〉•(Ẽ,E) = ∑
P∈P(µ)

∏
π∈P

∑
Γπ

1
|Aut µπ| 〈τk,l̄ A | επ, µπ〉(Ẽ,E)

Γπ qβΓπ

h̄gΓπ−1.

In the summation over Γπ, the only index to be summed over is βΓπ
on

Ẽ and the genus. This reduces the problem to 〈(τk,l̄ A)π | επ, µπ〉(Ẽ,E)
g .

Instead of working with all genera, the proposition follows from the
same argument by reduction modulo h̄g. �

5.3. Further reduction to local absolute invariants.

Proposition 5.3 ([11], Proposition 4.8). For the local simple flop Ẽ 99K Ẽ′, to
prove

F 〈τl̄ A | ε, µ〉(Ẽ,E)
g = 〈τl̄ F A | ε, µ〉(Ẽ′,E)

g

for all A ∈ H∗(Ẽ)⊕n, l ∈ Zn
+, and weighted partitions (ε, µ), it suffices to show

for mixed invariants of special type

F 〈τl̄ A, τk ε〉Ẽg0
= 〈τl̄ F A, τk ε〉Ẽ′g0

for all A, l, ε and k ∈ Z
ρ
+, and all g0 ≤ g.
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Proof. The proof in [11] works, so we only outline it. We apply deformation
to the normal cone for Z ↪→ Ẽ to get W → A1. Then W0 = Y1 ∪Y2 with

π : Y1
∼= PE(OE(−1,−1)⊕O)→ E

being a P1 bundle and Y2 ∼= Ẽ. Let γ̄ be the π-fiber curve class.
We prove the theorem by induction on (g, |µ|, n, ρ) with ρ in the reverse

ordering. Without loss of generality we assume that ε = ε I . The idea,
inspired by [14], is to degenerate a suitable absolute invariant of f -special
type (with virtual dimension matches) so that the desired relative invariant
appears as the main term. The same procedure in [11] leads to

〈τl̄ A, τµ1−1ε i1 , . . . , τµρ−1ε iρ
〉•Ẽg = ∑

µ′
m(µ′)×

∑
I′
〈τµ1−1ε i1 , . . . , τµρ−1ε iρ

| εI′ , µ′〉•(Y1,E)
0 〈τl̄ A | ε I′ , µ′〉(Ẽ,E)

g + R,

where R denotes the remaining terms which either have lower genus or
have total contact order smaller than d2 = |µ| = |µ′| or have number of
insertions fewer than n on the (Ẽ, E) side or the invariants on (Ẽ, E) are
disconnected ones. R is F -invariant by induction.

For the main terms, deg eI − deg eI′ = ρ − ρ′ by the virtual dimension
count. Also the integrals on (Y1, E) turn out to be fiber integrals (β1 = d2γ̄)
and this allows to conclude that deg eI ≤ deg eI′ and then ρ ≤ ρ′. The terms

〈τl̄ A | ε I′ , µ′〉(Ẽ,E)
g with ρ′ > ρ are handled by induction. The case ρ′ = ρ in

fact leads to eI′ = eI . Thus there is a single term remaining, which is

C(µ)〈τl̄ A | ε I , µ〉(Ẽ,E)

with C(µ) 6= 0. The proposition then follows by induction. �

Proof of Main Theorems. We only need to prove Theorem 0.2.
By Proposition 5.2, the theorem is reduced to the relative local case.

Moreover, the special type assumption implies that for any insertion τk j,l̄j
αj

with nontrivial descendent (k j ≥ 1) we may represent αj by a cycle with
support disjoint from Z. Thus we may select the cohomology lifting of αj
to be (αj, 0). To avoid trivial invariants this insertion only contributes to the
(Y1, E) side in the degeneration formula. Hence the theorem is reduced to
the case of relative invariants on local model Ẽ = PPr(O(−1)⊕(r+1) ⊕ O)
with at most ancestor insertions.

Now by Propositions 5.3, the theorem is further reduced to the case of
mixed invariants of f -special type with non-trivial appearance of ε:

〈τl̄ A, τk ε〉Ẽg .

The 2-point case with g = 0 and d2 = 0 is zero (for d1 = 0 by (4.3),
and for d1 > 0 by ε ∈ j∗H∗(E)). If d2 > 0 the F -invariance follows from
[11], Theorem 5.6 (c.f. Remark 4.6). All other cases are in the stable range
2g + n ≥ 3 which follow form Theorem 4.5. The proof is complete. �
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Remark 5.4. The proof also shows that f -special invariants with non-trivial
descendent are F -invariant even for 2g + n < 3, i.e. (g, n) = (0, 1) or (0, 2).
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