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History

1. NCP (1960): To findx ∈ IRn satisfying

〈F (x), x〉 = 0 , F (x) ≥ 0 , x ≥ 0.

2. SDCP(1980): To findX ∈ IRn×n satisfying

〈F (X), X〉 = 0 , F (X) � O , X � O.

3. SOCCP(1998): To findx ∈ IRn satisfying

〈F (x), x〉 = 0 , F (x) �Kn 0 , x �Kn 0.
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What’s SOC ?

The second-order cone (SOC) inIRn, also called Lorentz
cone, is defined to be

Kn = {(x1, x2) ∈ IR × IRn−1 | ‖x2‖ ≤ x1}

where‖ · ‖ denotes the Euclidean norm. Ifn = 1, letKn

be the set of nonnegative realsIR+.

n=2

X1

(a) the graph ofK2

n=3

X1

(b) the graph ofK3
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What’s SOCCP ?

The second-order cone complementarity problem
(SOCCP) is to findx, y ∈ IRn andζ ∈ IRl such that







〈x, y〉 = 0

x ∈ K , y ∈ K
x = F (ζ) , y = G(ζ)

where〈·, ·〉 denotes the Euclidean inner product,
F,G : IRl → IRn are smooth mappings,K is the
Cartesian product of SOC, that is,

K = Kn1 × · · · × Knm,

wheren1 + n2 + · · · + nm = n.
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Why study SOCCP ?

This problem has wide applications, e.g., Robust
linear programming, filter design, antenna design,
etc.. (Lobo, Vandenberghe, Boyd, Lebret, 1998)

It includes a large class of quadratically constrained
problems and minimization of sum of Euclidean
norms as special cases.

It also includes as a special case the well-known
nonlinear complementarity problem (NCP).

Difficulty : K is closed and convex, but non-polyhedral.
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Nonsmooth function

II

Nonsmooth functions approach
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The matrix-valued functions

Let Sn be the space ofn× n real symmetric matrices. For any
X ∈ Sn, its eigenvaluesλ1, λ2, · · · , λn are real and admits a spectral
decomposition:

X = P











λ1

.. .

λn











P T ,

whereP is orthogonal (i.e.,P T = P−1). Then, for any function
f : IR → IR, we define a corresponding matrix-valued function
fmat : Sn → Sn by

fmat(X) = P











f(λ1)

...

f(λn)











P T .
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Known results aboutfmat

(a) fmat is continuous ifff is continuous.

(b) fmat is directionally differentiable ifff is
directionally differentiable.

(c) fmat is Fréchet-differentiable ifff is
Fréchet-differentiable.

(d) fmat is continuously differentiable ifff is
continuously differentiable.

(e) fmat is strictly continuous ifff is strictly continuous.

(f) fmat is Lipschitz continuous with constantκ iff f is
Lipschitz continuous with constantκ.

(g) fmat is semismooth ifff is semismooth.
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Remarks

1. Strictly continuous is also called locally Lipschitz
continuous.

2. LetF : IRn → IRm is strictly continuous, thenF is
semismooth atx if F is directionally differentiable
atx and∀V ∈ ∂F (x+ h), we have

F (x+ h) − F (x) − V h = ◦(‖h‖)
3. Convex functions and piecewise continuously

differentiable functions are examples of semismooth
functions.
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Spectral Factorization

Let x = (x1, x2) ∈ IR × IRn−1, thenx can be
decomposed as

x = λ1u
(1) + λ2u

(2) ,

whereλ1, λ2 andu(1), u(2) are the spectral values and the
associated spectral vectors ofx are given by

λi = x1 + (−1)i‖x2‖ ,

u(i) =















1
2

(

1 , (−1)i x2

‖x2‖

)

, if x2 6= 0

1
2

(

1 , (−1)iw

)

, if x2 = 0 ,

for i = 1, 2 with w being any vector inIRn−1 satisfying
‖w‖ = 1. If x2 6= 0, the decomposition is unique.
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The SOC-functions

For any functionf : IR → IR, we define a corresponding
function onIRn associated with SOC by

f soc(x) = f(λ1) u
(1) + f(λ2) u

(2),

for all x = (x1, x2) ∈ IR × IRn−1, whereλ1, λ2 and
u(1), u(2) are the spectral values and vectors ofx.

If f is defined only on a subset ofIR, thenf soc is defined
on the corresponding subset ofIRn.
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Parallel results aboutf soc

(a) f soc is continuous ifff is continuous.

(b) f soc is directionally differentiable ifff is
directionally differentiable.

(c) f soc is Fréchet-differentiable ifff is
Fréchet-differentiable.

(d) f soc is continuously differentiable ifff is
continuously differentiable.

(e) f soc is strictly continuous ifff is strictly continuous.

(f) f soc is Lipschitz continuous with constantκ iff f is
Lipschitz continuous with constantκ.

(g) f soc is semismooth ifff is semismooth.
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A bridge from fmat to f soc

For anyx = (x1, x2) ∈ IR × IRn−1, letλ1, λ2 be its spectral values,

then

(a) For anyt ∈ IR, the matrixLx + tMx2
has eigenvalues ofλ1, λ2

andx1 + t of multiplicity n− 2, where

Lx =





x1 xT
2

x2 x1I



 and Mx2
=







0 0

0 I − x2x
T
2

‖x2‖2






.

(b) For anyf : IR → IR andt ∈ IR, we have

f soc(x) = fmat

(

Lx + tMx2

)

e,

wheree = (1, 0, · · · , 0)T ∈ IRn.
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A reformulation of SOCCP

Proposition [Fukushima-Luo-Tseng, 2002]

〈x, y〉 = 0, x ∈ K, y ∈ K, F (x, y, ζ) = 0.

m

H(x, y, ζ) :=

(

x− [x− y]+
F (x, y, ζ)

)

= 0,

where[·]+ : IRn → K denotes the nearest-point
projection ontoK.
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In Summary

SOCCP ⇐⇒ H(x, y, ζ) = 0.

H is nonsmooth due to the nonsmoothness of the
projection operator[·]+.

[·]+ is semismooth so thatH is semismooth.

This approach can be used to design and analyze
nonsmooth Newton-type methods for solving
H(x, y, ζ) = 0.
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Merit functions approach
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Merit function approach

We will show that the SOCCP can be reformulated as an
unconstrained differentiable minimization problem. The
objectve function of such unconstrained minimization
problem is called amerit function .
For simplicity, we assumem = 1, soK = Kn.
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Jordan product

For anyx = (x1, x2) ∈ IR × IRn−1 and
y = (y1, y2) ∈ IR × IRn−1, we define theirJordan
product associated withKn as

x ◦ y = (〈x, y〉 , y1x2 + x1y2)

The identity element under this product is
e := (1, 0, · · · , 0)T ∈ IRn.
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Basic Property

Property
(a) e ◦ x = x , ∀x ∈ IRn .

(b) x ◦ y = y ◦ x , ∀x, y ∈ IRn .

(c) (x+ y) ◦ z = x ◦ z + y ◦ z , ∀x, y, z ∈ IRn .

Remarks
1. The Jordan product isnot associative.

2. Kn is not closed under Jordan product.
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Jordan Product associated with SOC

We writex2 to meanx ◦ x and writex+ y to mean the
usual componentwise addition of vectors. Then we have:

If x ∈ Kn, then there exists a unique vector inKn,
denoted byx1/2 such that

(x1/2)2 = x1/2 ◦ x1/2 = x.

For anyx ∈ IRn, we havex2 ∈ Kn. Hence, there
exists a unique vector(x2)1/2 ∈ Kn denoted by|x|.
For anyx ∈ IRn, we havex2 = |x|2.
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A partial order associated withKn

For anyx, y in IRn, we denote

x �Kn y ⇐⇒ x− y ∈ Kn,

and

x ≻Kn y ⇐⇒ x− y ∈ int(Kn).

Then we have:

Any x ∈ IRn satisfies|x| �Kn x .

For anyx, y �Kn 0, if x �Kn y, then
x1/2 �Kn y1/2 .

For anyx, y ∈ IRn, if x2 �Kn y2 , then|x| �Kn |y| .
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Fischer-Burmeister function

We defineφ : IRn × IRn → IRn, by

φ(x, y) = (x2 + y2)1/2 − (x+ y).

φ is the Fischer-Burmeister function and is well-defined
here.
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A merit function

We defineψ : IRn × IRn → IR, by

ψ(x, y) = ‖φ(x, y)‖2.

It is proved by Fukushima-Luo-Tseng in 2002 that

ψ(x, y) = 0 ⇐⇒ x, y ∈ Kn , 〈x, y〉 = 0
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A smooth reformulation of SOCCP

Hence, we can reformulate SOCCP as an equivalent
unconstrained minimization problem :

(SOCCP)







Find x, y ∈ IRn, ζ ∈ IRl satisfying

〈x, y〉 = 0 , x, y ∈ Kn

x = F (ζ) , y = G(ζ)

m

min
ζ∈IRl

{f(ζ) = ψ(F (ζ), G(ζ))} .

Thusf is a merit function for SOCCP.
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Proposition

The functionψ is smooth everywhere. Moreover,
(i) If x2 + y2 ∈ int(Kn), then

∇xψ(x, y) =
(

LxL
−1
(x2+y2)1/2

− I
)

2φ(x, y) ,

∇yψ(x, y) =
(

LyL
−1
(x2+y2)1/2

− I
)

2φ(x, y) .

whereLx =





x1 x2
T

x2 x1I



.

(ii) If x2 + y2 6∈ int(Kn), i.e.,‖x‖2 + ‖y‖2 = 2‖x1x2 + y1y2‖, then

∇xψ(x, y) = (Lx̄ − I) 2φ(x, y)

∇yψ(x, y) = (Lȳ − I) 2φ(x, y) ,

wherex̄ =

( √
2x1√

‖x‖2+‖y‖2
, 0

)

andȳ =

( √
2y1√

‖x‖2+‖y‖2
, 0

)

.
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Two Important Lemmas

For anyx = (x1, x2), y = (y1, y2) ∈ IR × IRn−1 with
x2 + y2 6∈ int(Kn), we have

x2
1 = ‖x2‖2,

y2
1 = ‖y2‖2,

x1y1 = xT
2 y2,

x1y2 = y1x2.

For anyx = (x1, x2), y = (y1, y2) ∈ IR × IRn−1 with
x1x2 + y1y2 6= 0, we have

(

x1 − (x1x2+y1y2)T x2

‖x1x2+y1y2‖

)2
≤

∥

∥

∥
x2 − x1

x1x2+y1y2

‖x1x2+y1y2‖

∥

∥

∥

2

≤ ‖x‖2 + ‖y‖2 − 2‖x1x2 + y1y2‖.
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Proposition

Let f(ζ) = ψ(F (ζ), G(ζ)). Thenf is smooth and, for
everyζ ∈ IRn with ∇F (ζ),−∇G(ζ) column monotone,
we have either (i)f(ζ) = 0 or (ii) ∇f(ζ) 6= 0.
In case (ii), if∇G(ζ) is invertible, then
〈d(ζ),∇f(ζ)〉 < 0, where

d(ζ) := −(∇G(ζ)−1)T∇xψ(F (ζ), G(ζ)).

Note: We sayM,N ∈ IRn×n are column monotone if,
for anyu, v ∈ IRn,

Mu+Nv = 0 ⇒ uTv ≥ 0.

2004/11/22 – p. 29/51



Advantages

Every stationary pointζ of f is a global minimum if
∇F (ζ), −∇G(ζ) are column monotone.

For every non-stationary pointζ of f , we provide a
descent directiond(ζ) without computing the
Jacobian ofF (ζ).

The assumption of∇F (ζ), −∇G(ζ) being column
monotone is reasonable and holds for second-order
cone program (SOCP).
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Another merit function

Another merit function motivated by Yamashita and
Fukushima is defined as

ψ
YF

(x, y) = ψ0(〈x, y〉) + ψ(x, y),

whereψ0 : IR → [0,∞) is any smooth function
satisfying

ψ0(t) = 0 ∀t ≤ 0 and ψ′
0(t) > 0 ∀t > 0.
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Remarks

An example ofψ0 is ψ0(t) = 1
4(max{0, t})4.

Let f
YF

(ζ) = ψ
YF

(F (ζ), G(ζ)). It follows from
properties ofψ andψ0 thatf

YF
is also a smooth

merit function.

f
YF

has similar properties asf . In addition,f
YF

has
properties of bounded level sets and provides error
bounds whenF,G are jointly strongly monotone,
whereasf does not.
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Proposition

Let f
YF

(ζ) := ψ
YF

(F (ζ), G(ζ)). Thenf
YF

is smooth and,
for everyζ ∈ IRn with ∇F (ζ), −∇G(ζ) are column
monotone, either (i)f

YF
(ζ) = 0 or (ii) ∇f

YF
(ζ) 6= 0.

In case (ii), if∇G(ζ) is invertible, then
〈d

YF
(ζ),∇f

YF
(ζ)〉 < 0, where

d
YF

(ζ) :=

−(∇G(ζ)−1)T
(

ψ′
0(〈F (ζ), G(ζ)〉)G(ζ)

+∇xψ(F (ζ), G(ζ))
)

.
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Error Bounds for f
YF

Suppose thatF andG are jointly strongly monotone
mappings fromIRn to IRn. Also, suppose that SOCCP
has a solutionζ∗. Then there exists a scalarτ > 0 such
that

τ‖ζ − ζ∗‖2

≤ max{0, 〈F (ζ), G(ζ)〉} + ‖(−F (ζ))+‖
+‖(−G(ζ))+‖, ∀ζ ∈ IRn.

Moreover,

τ‖ζ − ζ∗‖2 ≤ ψ−1
0 (f

YF
(ζ)) + 2

√
2f

YF
(ζ)1/2,

for all ζ ∈ IRn.
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Remark

F andG are jointly strongly monotone if there exist
ρ > 0 such that

〈F (ζ) − F (ξ) , G(ζ) −G(ξ)〉 ≥ ρ‖ζ − ξ‖2,

for all ζ, ξ ∈ IRn.
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Bounded level sets forf
YF

Suppose thatF andG are differentiable, jointly strongly
monotone mappings fromIRn to IRn. Then the level set

L(γ) := {ζ ∈ IRn | f
YF

(ζ) ≤ γ}
is nonempty and bounded for allγ ≥ 0.

Remark:
The merit functionf lacks these properties due to the
absence of the termψ0(〈F (ζ), G(ζ)〉).
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Algorithms

IV

Algorithms
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Solve SOCP via merit function

The second-order cone program (SOCP) is

min cTx

s.t. Ax = b , x ∈ K,

whereA ∈ IRm×n has full rank andm < n. The KKT optimality

conditions can be reformulated as

min
ζ∈IRn

{f(ζ) = ψ(F (ζ), G(ζ))} ,

where
F (ζ) = d+

(

I −AT (AAT )−1A
)

ζ

G(ζ) = c−AT (AAT )−1Aζ,

with d satisfyingAd = b.
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Algorithm (1)

• FR-CG method (Fletcher-Reeves):

ζk+1 = ζk + αkdk ,

dk = −∇f(ζk) + βkFRd
k−1 ,

whereβkFR is given by

βkFR =







0, k = 1
∇f(ζk)T∇f(ζk)

∇f(ζk−1)T∇f(ζk−1)
, k ≥ 2.
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Algorithm (2)

• PR-CG method (Polak-Ribier):

ζk+1 = ζk + αkdk ,

dk = −∇f(ζk) + βkPRd
k−1 ,

whereβkPR is given by

βkPR =
∇f(ζk)T

(

∇f(ζk) −∇f(ζk−1)
)

∇f(ζk−1)T∇f(ζk−1)
.

Remark: Powell, in 1986, suggested to modify the
PR-CG method by setting

βk+ = max{βkPR, 0}.
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Algorithm (3)

• BFGS method (Broyden-Fletcher-Goldfarb-Shanno):

ζk+1 = ζk + αkdk ,

dk = −Dk∇f(ζk) ,

where

Dk+1 = Dk +

[

1 +
(qk)TDkqk

(pk)T qk

]

pk(pk)T

(pk)T qk

− Dkqk(pk)T + pk(pk)TDk

(pk)T qk
,

and







pk = ζk+1 − ζk,

qk = ∇f(ζk+1) −∇f(ζk).

Remark: Need big storage when dimension is large.
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Algorithm (4)

• L-BFGS method: Rewrite BFGS update as

Dk+1 = (V k)TDkV k + ρkpk(pk)T ,

where

ρk =
1

(qk)T pk
, V k = I − ρkqk(pk)T ,

and

Dk = (V T
k−1 · · ·V T

k−m)Dk
0 (Vk−m · · ·Vk−1)

+ ρk−m(V T
k−1 · · ·V T

k−m+1)

pk−mp
T
k−m(Vk−m+1 · · ·Vk−1)

+ ρk−m+1(V
T
k−1 · · ·V T

k−m+2)

pk−m+1p
T
k−m+1(Vk−m+2 · · ·Vk−1)

+ · · ·+
+ ρk−1pk−1p

T
k−1. 2004/11/22 – p. 42/51



Remarks

Dk+1 is obtained by updatingDk using the pair
{pk, qk}.

We store a modified version ofDk implicitly by
storing the most recently computedm pairs{pk, qk}.

When them+ 1 pair is computed, the oldest pair is
discarded and its location in memory taken by the
new pair.

The L-BFGS is suitable for large problems because
it has been observed in practice that small values of
m (3 ≤ m ≤ 20) gives satisfactory results.
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Initial scalings of Dk
0

Liu and Nocedal studied four different types of initial scalings ofDk
0

for L-BFGS.

Scaling 1 Dk
0 = D0 (no scaling).

Scaling 2 γ0D0 (only initial scaling).

Scaling 3 Dk
0 = γkD0,whereγk = (qk)Tpk/‖qk‖2.

Scaling 4 Same as Scaling 3 during the first m

iterations. Fork > m,Dk
0 = diag(ωi

k),

ωi
k =

pi
k−1q

i
k−1 + · · · + pi

k−mq
i
k−m

(qi
k−1)

2 + · · · + (qi
k−m)2

,

i = 1, · · · , n.

Remark: Scaling 3 is the most efficient initial scaling.
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Step-size

Armijo rule : Fix β, σ ∈ (0, 1) ands > 0, chooseαk

that is the largestα ∈ {s, sβ, sβ2, · · ·} satisfying

f(ζk + αdk) − f(ζk)

α
≤ σ∇f(ζk)Tdk,

i.e.,

f(ζk + αdk) ≤ f(ζk) + σα∇f(ζk)Tdk.
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Numerical Experiments

V

Numerical Experiments
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Test Problems

Table 1: Set of test problems

Problem

Names
n m

# of nonzero elts

of matrixA
structure of SOCs

nb 2383 123 192439 [4 × 1; 793× 3]

nql30 6302 3680 26819 [3602× 1; 900× 3]

qssp30 7568 3691 36851 [2 × 1; 1891× 4]

nb-L2-bessel 2641 123 209924 [4 × 1; 1× 123; 838× 3]

In the structure of SOCs, for example,
[ 4 × 1; 1× 123; 838× 3 ]
means thatK consists of the product of 4K1, oneK123,
and 838K3.
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FR-CG Convergence
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Figure 1: The convergence by FR-CG for ’nb’.
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PR-CG Convergence
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Figure 2: The convergence by PR-CG for ’nb’.
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L-BFGS Convergence 1
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Figure 3: The convergence by L-BFGS (Chol) for ’nb’.
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L-BFGS Convergence 2
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Figure 4: The convergence by L-BFGS (CG) for ’nb’.
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