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luction

Introduction



1. NCP (1960): To findx € IR" satisfying
(F(x),z) =0, F(z) >0, x > 0.
2. SDCP(1980): To findX € IR™*" satisfying

(F(X),X)=0, F(X)=0, X = O.

3. SOCCP(1998): To findx € IR" satisfying

(F(x),z) =0, F(x) =xn 0, x =xn 0.
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The second-order cone (SOC)IRY", also called Lorentz
cone, Is defined to be

K" = {(z1,22) € R x R"™" | [|aa|| < 21}

where|| - | denotes the Euclidean norm.if= 1, let K"
be the set of nonnegative redhs, .

(a) the graph ofC? (b) the graph ofC?
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The second-order cone complementarity problem
(SOCCP) is to find;, y € IR" and( € IR such that

(z,y) =0
rell , yek

szF(C) ; y:G(C)

where(-, -) denotes the Euclidean inner product,

F. G : R! — IR" are smooth mappingk; is the
Cartesian product of SOC, that is,

K=K" x--- x "',

Wheren1+n2+---+nm:n.
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This problem has wide applications, e.g., Robust
linear programming, filter design, antenna design,
etc.. (Lobo, Vandenberghe, Boyd, Lebret, 1998)

It Includes a large class of quadratically constraine
problems and minimization of sum of Euclidean
norms as special cases.

It also Includes as a special case the well-known
nonlinear complementarity problem (NCP).

Difficulty : K Is closed and convex, but non-polyhedral.
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mooth function

Nonsmooth functions approach



The matrix-valued functions

Let S™ be the space ot x n real symmetric matrices. For any
X € 8", Its eigenvalues, Ao, - - -, \,, are real and admits a spectra
decomposition:

A1
X=P o Pt
K

whereP is orthogonal (i.e.P? = P~1). Then, for any function
f: IR — IR, we define a corresponding matrix-valued function
fmat : Sn N Sn by

FO)
frNX) =P p'.
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(@) f™* is continuous ifff is continuous.

(b) f™at s directionally differentiable ifff is
directionally differentiable.

(c) f™is Fréchet-differentiable iff is
Fréchet-differentiable.

(d) f™atjs continuously differentiable iff is
continuously differentiable.

(e) ™t is strictly continuous ifff is strictly continuous.

(f) /™ js Lipschitz continuous with constantiff f is
Lipschitz continuous with constant

(g) ™ is semismooth ifff is semismooth.

2004/11/22 — p. 10/



1.

2.

Strictly continuous is also called locally Lipschitz
continuous.

Let F' : IR" — IR™ Is strictly continuous, ther' Is
semismooth at If F'Is directionally differentiable

atz andvV € 0F (x + h), we have
F(x4+h)— F(x) —Vh=o(||h]||)

. Convex functions and piecewise continuously

differentiable functions are examples of semismoo
functions.
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Letz = (z1,25) € R x IR™ !, thenx can be
decomposed as
T = )xlu(l) -+ )\Qu(Z) :

where);, \, andu'?, u?) are the spectral values and th
associated spectral vectorsaoére given by

Ai = 1+ (=1)"|zell
(
Hon o) it 20
WO |22]]
L1, (—D)w),  ifer=0,

\

for ¢ = 1,2 with w being any vector ilR"* satisfying
|w|| = 1. If 25 # 0, the decomposition is unique.
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For any functionf : IR — IR, we define a corresponding
function onIR” associated with SOC by

Foo(w) = fO0) u® + F (o) u®,

forall v = (z1,22) € R x IR" !, where\;, \» and
uM), u®) are the spectral values and vectors:of

If fIs defined only on a subset &f, then f*°¢ is defined

on the corresponding subset

if.
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(@) °°¢Is continuous ifff is continuous.

(b) f°°¢ is directionally differentiable ifff Is
directionally differentiable.

(c) f°¢is Frechet-differentiable iff is
Fréchet-differentiable.

(d) f°°¢is continuously differentiable iff Is
continuously differentiable.

(e) f°°¢Is strictly continuous ifff Is strictly continuous.

(f) f°°¢is Lipschitz continuous with constantiff f is
Lipschitz continuous with constant

(g) f°°¢is semismooth ifff is semismooth.
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A bridlge from f™atto fsoc

For anyx = (z1,75) € IR x IR™ !, let A\, \, be its spectral values,

then

(a) For anyt € IR, the matrixL, + tM,, has eigenvalues of;, A\,

andx; + t of multiplicity n — 2, where

L, =

X1

)

Ty

5131[

and M,, =

(b) Foranyf : IR — IR andt € IR, we have

wheree = (1,0,---,0) € IR".

fSOC(:C) — fmat (La: + tMa:2>€p
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A reformulation of SOCCP

Proposition [Fukushima-Luo-Tseng, 2002]

(x,y) =0, ek, yek, F(z,y,()=0.

0

Hn 0= (ot ) =

where[-]. : IR" — K denotes the nearest-point
projection ontakC.
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SOCCP <= H(z,y,() = 0.
H 1s nonsmooth due to the nonsmoothness of the
projection operator|...
-]+ Is semismooth so thdf is semismooth.

This approach can be used to design and analyze
nonsmooth Newton-type methods for solving

H(z,y,¢) =0.
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Merit functions approach



We will show that the SOCCP can be reformulated as «
unconstrained differentiable minimization problem. The
objectve function of such unconstrained minimization
problem is called anerit function.

For simplicity, we assume: = 1, soXC = K",
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For anyr = (71,72) € R x IR" ! and
y = (y1,12) € IR x R"!, we define theidordan
product associated witliC" as

L oY — (<*/an> , Y12 +5131y2)

The identity element under this product is
e:= (1,0,---,0)F € R™.
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Property

(@) eor=a, VrelR".

(b)) xoy=yox, Vr,yelR".

() (x+y)oz=xz0z4+yoz, VryzeclR".

Remarks
1. The Jordan product st associative.
2. K" 1s not closed under Jordan product.
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Jordan Product associated with SOC

We write 22 to meanz o x and writez + y to mean the
usual componentwise addition of vectors. Then we ha

w If x € ", then there exists a unique vectorkirt,
denoted by:!/? such that

(x1/2)2 _ 2125 21/2 —

= For anyz € IR®, we haver? € K". Hence, there
exists a unique vectdr?)!/? ¢ K" denoted byz|.

» For anyz € IR", we haver® = |z|°.
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A partial order associated with "

For anyz, y in IR", we denote
xt]Cny@x'_yEKn,

and
T >=in Y <= x —y € int(L").
Then we have:

= Any z € IR" satisfiedz| = x .

m Foranyx,y =x» 0, If z >=xn y, then
p1/2 = o y1/2 :

w For anyz,y € IR", if 2 =i» v, then|z| =i |y] .
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Fischer-Burmeister function
We definep : IR" x IR” — IR", by

d(z,y) = (z> + ¥*)? — (z +9).

¢ IS the Fischer-Burmeister function and is well-definec
here.
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A merit function
We definey : IR" x IR" — 1R, by

Y(z,y) = oz, y)||*
It Is proved by Fukushima-Luo-Tseng in 2002 that

Y(x,y) =0<= 2,y e K", (z,y) =0
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A smooth reformulation of SOCCP

Hence, we can reformulate SOCCP as an equivalent
unconstrained minimization problem :

Find z,y € IR", ¢ € IR! satisfying
(SOCCP) (x,y) =0, x,y € K"
z=F((), y=G()

Thus f Is a merit function for SOCCP.
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Proposition

The functiom) Is smooth everywhere. Moreover,
(i) If 22 + 32 € int(K"), then

Vx¢($ay) — (LxL(_;Q_'_yz)l/Q i I) 2¢($7y) y
Vyp(@y) = (LyLghi e —1)20(@y) .
_ _—
whereL, — o
ro x11

(i) If 22 + 32 & int(K™), i.e. ||z))2 + |[y]|2 = 2|z122 + y1ys]|, then

V:ch(xay) — (L:TZ _ I) 2¢($,y)
Vyw(flfay) — (L’g _ I) 2¢(any) 9

wherezx = v/ 22y ,0 ) andy = V2y1 0.
. (\/Ilcvll2+||y||2 ) < (\/I|x||2+||y||2
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TWO Important Lemmas

m For anyr = (21, 22),y = (y1,92) € IR x IR*! with
2 + y? ¢ int(K"), we have

z = |zl
vi = el
L1Yr = 352Ty2,
L1Y2 = Yir2.

m For anyr = (21, 22),y = (y1,92) € IR x IR*! with
T1T2 + Y1Y2 7& 0, we have

_ (zimotyiye) T o : _ L1221+ Y1Y2 °
(xl [122+y1y2]] ) S 172 T P eratyige ‘
<zl + lyll? = 2l|lz1ze + yayel.-
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Let f(¢) = ¢¥(F((),G(()). Thenf is smooth and, for
every( € IR" with VF((), —VG(¢) column monotone,

we have either (iY'(¢) = 0 or (i) Vf({) # 0.
In case (ii), IfVG(() is invertible, then

(d(¢),Vf(()) <0, where
d(¢) == —(VG()™) Vb (F(¢), G(())-

Note: We sayM, N € IR"*™ are column monotone If,
foranyu,v € IR",

Mu-+ Nv=0= ulv>0.



Every stationary poing of f Is a global minimum if
VF((), —VG(() are column monotone.

For every non-stationary poiqgtof f, we provide a
descent directiod(¢) without computing the

Jacobian off’(¢).

The assumption o7 F'(¢), —VG(() being column
monotone IS reasonable and holds for second-orde

cone program (SOCP).
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Another merit function

Another merit function motivated by Yamashita and
Fukushima is defined as

wYF(x7y) — ¢0(<$,y>) + w(xvy)v

wherey, : IR — [0, co) is any smooth function
satisfying

o) =0 V<0  and  ¥(t) >0 V> 0.
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An example ofi) is 1y (t) = $(max{0,¢})*.
).

Let f,.(C) = ¥,.(F((),G(C)). It follows from
properties ofp andvyy that f.,. Is also a smooth
merit function.

f,. has similar properties &5 In addition, f... has
properties of bounded level sets and provides erro
bounds wherr’, G are jointly strongly monotone,
whereasf does not.
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Let £,.(C) := ¢¥,.(F((),G(C)). Thenf,  is smooth and,
for every( € IR" with VF'((), —VG(() are column
monotone, either (i¥,.(¢) = 0 or (i) V£,.(¢) # 0.

In case (ii), IfVG(() is invertible, then
(dyi(€), V [1(C)) <0, where



Suppose that’ andG' are jointly strongly monotone
mappings fronR" to IR". Also, suppose that SOCCP
has a solutiorg*. Then there exists a scalar> 0 such
that

Tl|¢ = ¢*|°

< max{0, (F(C), G(¢)) } + [(=F(C))+|
HI(=G()+ll, V¢ eR™

Moreover,

TII¢ = 11 < ¥yt (firr(€)) +2V2£, (O)V2,
forall ¢ € IR".
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F andd are jointly strongly monotone Iif there exist
p > 0 such that

(F(¢) = F(&) , G(¢) = G(&)) = pll¢ —&II%,
forall ¢, € R".
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Suppose that’ andG are differentiable, jointly strongly
monotone mappings fromR" to IR". Then the level set

L(7) =1C € R"| f,x(C) <7}

IS nonempty and bounded for all> 0.

Remark:
The merit functionf lacks these properties due to the

absence of the termy ((F(¢), G(())).
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IV

Algorithms



Solve SOCP via merit function

The second-order cone program (SOCP) is

min clz

st. Ax=0b, x €,

whereA € IR™*" has full rank andn < n. The KKT optimality
conditions can be reformulated as

min {f(¢) = ¢¥(F(¢),G(C))}

CERN

where
F(()=d+ (I — A" (AA")"1A) ¢
G(() = c— AT(AAT) 71 AC,

with d satisfyingAd = b.
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Algorithm (1)

e FR-CG method (Fletcher-Reeves):

Ck+1
dk

Ck_{_akdk7
—Vf(¢*) + Bgrd* ",

wheregg, is given by

0, k=1
Brr = { VICVICE) o,
VATV T



e PR-CG method (Polak-Ribier):

Ck+1 _ Ck+()ékdk,
= V() + B

wheregg: is given by

VI (T(CH) = V()
VIGIVIGT

Remark: Powell, in 1986, suggested to modify the
PR-CG method by setting

6&— — max{ﬁf)R, 0.

k
5PR —
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Algorithm (3)

e BFGS method (Broyden-Fletcher-Goldfarb-Shanno):

Ck—{—l — Ck s Ozkdk :
where
D1 — Dk 1+(Qk)TDqu pF(pF)T
k k(. k\T (pZ)Tng k(pk)TQk
_ D¢"(p")" +p (") D
(p*) T q" ’

k. _ k+1 _ rk
and p - C i C )
¢ = V() = V().

Remark: Need big storage when dimension is large.
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Algorithm (4)

e L-BFGS method: Rewrite BFGS update as

Dk—l—l _ (Vk)TDkvk +,0kpk(pk)T7

where
1
k k k k/ Ek\T
pt = , Vi=1—-p"¢"(p") ,
(gF)Tpk (P")
and
DF = (VL VL DG (Viem -+ Vie1)

+  p—m (Vs Vil )
Pk-mDp—mn(Vi—ms1 - V1)

+ phmr1t (Vo Vi o)
Pr—m+1Pk— 1 Vi—mt2 -+ Vi—1)

4ot

4 pk—1pk—1pf_1- 2004/11/22 — p. 42/



D1 is obtained by updating)” using the pair
{p",q"}.

We store a modified version @ implicitly by
storing the most recently computedpairs{p®, ¢*}.
When them + 1 pair is computed, the oldest pair Is

discarded and its location in memory taken by the
new pair.

The L-BFGS is suitable for large problems becaus
It has been observed in practice that small values ¢
m (3 < m < 20) gives satisfactory results.
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Liu and Nocedal studied four different types of initial sngk of D}

for L-BFGS.

Scaling 1
Scaling 2
Scaling 3
Scaling 4

D§ = Dy (no scaling).

YDy (only initial scaling).

D = v" Dy, wherey* = (¢")"p* /| |I*.

Same as Scaling 3 during the first m

iterations. Fork > m, Df = diag(w?),

wi = Porlici T 4 DG
(@r—1)® + -+ (Gh—p)’

1=1,---,n.

)

Remark: Scaling 3 is the most efficient initial scaling.
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Armijo rule : Fix 3,0 € (0,1) ands > 0, choosen”
that is the largest € {s, s3, s3%, - - -} satisfying

F(¢" +ad) - £(6)

84

<oVf(¢H'd,

l.e.,

f(¢"+ ad®) < f(¢") + oaV f(¢h) d".
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arical Experiments

V

Numerical Experiments



Table 1: Set of test problems

Problem # of nonzero elts
n m _ structure of SOCs
Names of matrix A
nb 2383 | 123 192439 [4 x 1; 793 % 3]
ngl30 6302 | 3680 26819 [3602 x 1; 900x 3]
gssp30 7568 | 3691 36851 [2 x 1; 1891 x 4]
nb-L2-bessel| 2641 | 123 209924 [4 x 1;1x 123; 838x 3]
In the structure of SOCs, for example,

[4 x 1;1x 123;838x 3]
means thatC consists of the product of €', one'?3,

and 8381C3.
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Merit Func values v.s. Iterations
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Figure 1. The convergence by FR-CG for 'nb’.
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Merit Func values v.s. Iterations
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Figure 2. The convergence by PR-CG for 'nb’.
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Figure 3: The convergence by L-BFGS (Chol) for 'nb’
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Figure 4: The convergence by L-BFGS (CG) for 'nb’.
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