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Introduction
degenerations
motivation

Degenerations

In this talk, we will discuss how to study a degeneration. First, let
us look at the definition.

Definition

A degeneration is a proper, surjective map
f:X—-A,

where X is a Kahler manifold and A a unit disk. The map f has
maximal rank at each point in A* = A\ {0}. We call
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A degeneration is a proper, surjective map

f:X—-A,

where X is a Kahler manifold and A a unit disk. The map f has
maximal rank at each point in A* = A\ {0}. We call

o X; = f~1(t) a smooth, or generic fiber for all t # 0, and
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Degenerations

In this talk, we will discuss how to study a degeneration. First, let
us look at the definition.

Definition
A degeneration is a proper, surjective map

f:X—-A,

where X is a Kahler manifold and A a unit disk. The map f has
maximal rank at each point in A* = A\ {0}. We call

o X; = f~1(t) a smooth, or generic fiber for all t # 0, and
o Xo = f~1(0) the singular, or degenerated fiber.
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Degenerations (continues)

Fix f': X' — A*, where
o X'=X\{Xo}
o N* = A\ {0}
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Degenerations (continues)

Fix f': X' — A*, where

o X' =X\ {X}

o AN* = A\ {0}
One might get different singular fibers from the same f’. For
example, we can blow-up or blow-down Xy and keep X’ unchaged.
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Degenerations (continues)

Fix f': X' — A*, where

o X' =X\ {X}

o AN* = A\ {0}
One might get different singular fibers from the same f’. For
example, we can blow-up or blow-down Xy and keep X’ unchaged.
Therefore, we want to study some invariants of the fibers. In

Hodge theory, the invariants will be Hodge structures and Mixed
Hodge Structures.
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Naive Ideas

We want to know how f(x) = 2x3 — 3x? looks like.
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Naive Ideas

f'(x) = 6x% — 6x = 0. We got two critical points: 0,1
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Naive Ideas

See how the function looks like around the critical points.
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Naive Ideas

We get the function.
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Motivation

@ We can get a “good cut” for a reasonable good fibration.
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@ We can get a “good cut” for a reasonable good fibration.

Theorem (Donaldson, 1999)

Any Symplectic manifold admits a Lefschetz pencil.
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Motivation

@ We can get a “good cut” for a reasonable good fibration.

Theorem (Donaldson, 1999)
Any Symplectic manifold admits a Lefschetz pencil.

@ Mumford’'s GIT.
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From Abelian to Non-abelian non-abelian cohomology
de Rham Theorem

Study the Singular Fiber

Let f : X — A be a degeneration.

study]

Xt H"(X¢) <— Hodge Structure or MHS
Xo HO(X,) put a MHS on it
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From Abelian to Non-abelian non-abelian cohomology
de Rham Theorem

Non-abelian Cohomology

H(X;) = Hom(7(Xy), C)

non-abelian

HE(Xe) = Hom(m (X¢), G)//
We shall consider G = GL(n, C),SL(n,C),.. ..

H'(X;) = Hom(m1(Xt),C) | 0 — Eo(X¢) — Ex(Xe) — -
1 _ kerd;
Hpg (Xt)

T imdy
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From Abelian to Non-abelian non-abelian cohomology
de Rham Theorem

de Rham Theorem

The link between the algebraic and analytic worlds.

Theorem (de Rham)

br(Xt) = H*(Xt)

“proof.”
HER (X)) = % H(X;) = Hom(7(Xy), C)
w € El()<i')I fo w
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Pure Hodge Structures
iation of Hodge Structures
Hodge Theory Hodge Structures
The Clemens-Schmid Exact Sequence

Hodge Theorem

Theorem (Hodge)

e X : Kahler manifold
o HPI(X) = close (p, q) forms
exact (p, q) forms

Then
H (X)) = @ HPI(X).

p+gq=k
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Pure Hodge Structures
Variation of Hodge Structures
Hodge Theory Mixed Hodge Structures

The Clemens-Schmid Exact Sequence

Hodge Structures

A Hodge structure V of weight k consists the following data:
@ V7. finitely generated abelian group

o Ve =Vz®C.
Ve = @ VP4
pt+q=k

and

vp.a — V9P
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Hodge Filtration

There is an equivalent way to define a Hodge structure.

Definition
A Hodge filtration on V' of weight k is a decreasing filtration

V=FVD>...DFPVDFPly D . ..

satisfying

V ~ FPV @ Fk=pHLY

Think of differential (p, g) forms, then
@ FPV = forms have at least p dz's.

@ FIV = forms have at least g dz's.
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Hodge Theory M dge Structures
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Equivalence of the Definitions

(VP prg=k == {FPV}p=01,. k

“proof.”
(=)

FPV = @ — Vk,O @ kal,l DD Vp,kfp
t+s=k,t>p

VP = FPY A FAV
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Hodge Structures
ariation of Hodge Structures
Hodge Theory Mixed Hodge Structures
The Clemens-Schmid Exact Sequence

Observation

Given a degeneration. Griffiths observers that Hodge filtrations
vary holomorphically in families, whereas the (p, q) pieces generally
do not. Roughly speaking, we have

’algebraic ‘ ’ analytic‘
VX FP
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Variation of Hodge Structures

Let f: X — A be a degeneration. Consider ' : X’ — A*. We get
the following local system (locally constant sheaf):

H* .= R*,Z = {HX(X¢, Z) }ten
Define a holomorphic vector bundle:
HK = H* @7 Op-.

Let
FP = {FPHN(X¢)}eenr € HE.

Griffiths proved that FP is a holomorphic subbundle of #* and the
natural flat connection of H* induces a map

v FP = FP @ Q..
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Variation of Hodge Structures (continues)

The previous observations give us a prototype of a variation of
Hodge structure.

Definition
A variation of Hodge structure of weight k over A* is a Z-local
system V together with a flag

D FPDOFPHL O L.

of holomorphic subbundles of the flat bundle V :=V ®z O~
which satisfies

o v:FP - FPleQL.
e {FP} induces Hodge fibration at each fiber.
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Mixed Hodge Structures

Definition (Degline)
A mixed Hodge structure (MHS) consists
@ a finitely generated abelian group V7

@ an increasing filtration (the weight filtration)
e C W1V S WiV € WiV C---

where Vo = Vz ® Q
@ a decreasing filtration (the Hodge filtration)

500 D) [:P—l\/(C D FPVe D FP+1\/C D) 055

where Vo =V, ® C
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The Clemens-Schmid Exact Sequence

Mixed Hodge Structures (continues)

Definition (MHS, continues)

(Vz, { WV}, {FPV}) satisfies the following properties. For each
m, define

W,V
QWy = _m”
T W, v

FPGrVV = im {FPV N W,V — GrVV}

{FPGrY'V} is a Hodge structure.
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Example

Let H™ H™ ... H™ are Hodge structures of weight
my, my, ..., my, respectively. Suppose my < mp < --- < my. Let

L
-,
i=1

and
¢
FPH := (P FPH™
i=1
W,,H := @ Hk
k<m

Then (H, {W,,H},{FPH}) is a MHS, and such a MHS is said to
be split.

Yen-lung Tsai Algebraic Hodge Theory



Hodge Theory
The Clemens-Schmid Exact Sequence

Example (proof)

W W,,H
g W,—1H

EBkgm Hk

k
k<m-1 H
—H™

We need to check if FPH induces a Hodge filtration on Gry H.

l
FPHN Gy = @ FPH™ NH”
i=1
= FPH™

Yen-lung Tsai Algebraic Hodge Theory



ructures
odge Structures
1 Hodge ictures
The Clemens-Schmid Exact Sequence

Hodge Theory

Picard-Lefschetz Transformation

Let us go back to a degeneration f: X — A. f': X' — A*isa
locally trivial fibration.

Each element of the fundamental group 71(A*) = Z of the base
A*, induces an automorphism on both cohomology and homotopy
groups. In particular, take the positive generator of 71 (A*), we
have the following associate maps:

T HY(X,) — HY(X,)
T HL(X:) — HL(Xe)

which called the Picard-Lefschetz Transformation.
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Picard-Lefschetz Transformation (continues)

Theorem (Landman)

T is quasi unipotent. i..e. There exist s,t € Z such that

(T°—1)f=0

Define N := log T. It is easy to see that N is nilpotent. (N9 =/
for some d.)
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The Clemens-Schmid Exact Sequence

To simplify, assume each generic fiber X; is a curve.

1— Hl(Xo) — Hl(Xt) — Hl(Xt) — Hi(Xo) — 1

Theorem (Clemens)

The above sequence is exact.

However, both N and T are NOT Hodge/mixed Hodge morphisms
in general!
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The Limit Mixed Hodge Structure

Each HX(X;) has a Hodge structure. Schmid observed that when t
approaches to zero, the Hodge structure tends to be a mixed
Hodge structure.

Hk(Xt) — @p—i—q:k HP-9 {Fka (Xt)}

\Lt—»O

Mixed Hodge Structure

The mixed Hodge structure is called the limit mixed Hodge
structure.
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The Weight Filtration

Theorem (Schmid)
The weight filtration of the limit mixed Hodge structure can be
determined by the Picard-Lefschetz transformation.

H™(X;:) = Wom 2 Wopm—1--- D Wp D0

° N(Wn) - Wn—2
o Nk:Gr\, H™(X() = Gro_, H™(Xy)
° N(Wk) =im NN W_,
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Compute the Weight Filtration

It is easy to calculate the limit weight filtration. First, we get Wom
for free. Then, from the previous theorem, we have

w2m W,
N 0 Wo.
Wom—1 W_;

We can find Wy and W5,,—1 then.

imN™ =W,
ker N = Wzm,1
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The Clemens-Schmid Exact Sequence (again)

Theorem (Clemens-Schmid)

All maps on the Clemens-Schmid exact sequence are morphisms of
the limit mixed Hodge structure.

example. Let X; be a complex curve (for example, a Riemann
surface of genus g).
H'(X) =W D W1 D W20
imN =W,
ker N = W,
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Example

1——HY(Xo) — HY(X;) — HY(X;) — Hi(X:) —1
@] U @] @]}
wQ Wi Wy —— W/,
] U U U
0 Wo Wo 0
U @]
0 0
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Non-abelian Hodge Theory

The Clemens-Schmid Exact Sequence

It is reasonable to consider the analog of the Clemens-Schmid
exact sequence.

1 — HE(Xo) — HE(Xp) — HE(X) = M — 1

Theorem (Katzarkov, Xia, Tsai, 2003-2004)

There are counterexamples of non-abelian Clemens-Schmid exact
sequence for nilpotent or irreducible representations.

Yen-lung Tsai Algebraic Hodge Theory



direct approach
Chen-Hains' Theory

Non-abelian Hodge Theory

Chen-Hains' Theory

Goal: We want to detect elements of 71(X, x) that are not
visible on Hj (X).
Analytic: lterated Integrals

Definition
Let v € PM, and wy, wa, ..., w, € EX(X).

/W1W2~-Wr:/ fl(tl)"‘fr(tr)dtl"'dtr
gl 0<t;<--<t,<1

where fj(t)dt = r*w;.
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Homotopy Groups

algebraic: homotopy groups
step 1: Consider

Cmi(X,x)={ > g lcgeC}.
gemi(Xt)

step 2: Consider the augmentation
e :Cm (X, x) —C

> s =Y G

Let J = kere and consider Cm1(X, x)/J™.
step 3: Take the completion:

P

Cm1(Xe, x) =i

«—

Cm (X, x)/J™.
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Non-abelian Hodge Theory

Thank You!
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