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The function I(a, b, c)∫ 2π

0

dx

∫ 2π

0

dy ln[1− a cosx− b cos y − (1− a− b) cos(x+ y)]

(i) For a = b = 2 and c = 0,

I(2, 2, 0) = 4/π(1− 1
32

+
1
52
− 1

72
− · · ·),

which gives the spanning-tree per-site entropy on rectangular lattices.

(ii) For a = b = c = 2,

I(2, 2, 2) = 6/π(1− 1
32

+
1
52
− 1

72
− · · ·) +

1
2

ln 3,

which gives the spanning-tree per-site entropy on triagular lattices.
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( see Kasteleyn (1991), Temperley - Fisher (1961), F.Y.Wu (1977) and

Glassr-Wu 2004, etc. ). In general, I(a, b, c) =?
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Consider a q-state Potts model on square lattice of N sites with

interaction K = ε/kT . Its partition function is

ZN(K) =
∑ ∏

<i,j>

exp[Kδ(σi, σj)],

where∑
denote the sum is over all qN spin states

σi = {1, 2..., q}, i = 1, 2, ..., N ,

< i, j > is nearest-neighbor connected i and j

and δ is the Kronecker delta function.

If the constant ε > 0(ε < 0), we call it ferromagnetic (antiferromagnetic

)case.
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We can rewrite ZN(K) as following

ZN(K) =
∑ ∏

<i,j>

exp[Kδ(σi, σj)]

=
∑ ∏

<i,j>

{
1 + (eK − 1)δ(σi, σj)

}
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We can rewrite ZN(K) as following

ZN(K) =
∑ ∏

<i,j>

exp[Kδ(σi, σj)]

=
∑ ∏

<i,j>

{
1 + (eK − 1)δ(σi, σj)

}
=
∑
G

qc(G)(eK − 1)l(G),

where the summation is over all edge sets G of the lattice, c(G) is the

number of connected clusters in G including isolated points, and l(G) is

the number of lines in G.
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Similarly, consider a q-state Potts model on triangle lattice of N sites

with interactions K1,K2,K3 along the three principle lattice. We have

ZN(K1,K2,K3)

=
∑ ∏

<i,j>

exp[Kαδ(σi, σj)]

=
∑
G

qc(G)(eK1 − 1)l1(G)(eK2 − 1)l2(G)(eK3 − 1)l3(G).
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Similarly, consider a q-state Potts model on triangle lattice of N sites

with interactions K1,K2,K3 along the three principle lattice. We have

ZN(K1,K2,K3)

=
∑ ∏

<i,j>

exp[Kαδ(σi, σj)]

=
∑
G

qc(G)(eK1 − 1)l1(G)(eK2 − 1)l2(G)(eK3 − 1)l3(G).

We are interested in the per-site free energy of the random cluster

model

fRC = lim
N→∞

logZRC
N (k1, k2, k3)

N
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Since

ZN(K1,K2,K3) =
∑
G

qc(G)(eK1 − 1)l1(G)(eK2 − 1)l2(G)

×(eK3 − 1)l3(G).

For each graph G, by Euler’s relation

s = c(G)−N + l1(G) + l2(G) + l3(G).

where s is the number of circuits in G. There is polygon a p such that

p = c(G) + s
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Then

ZN(K1,K2,K3) =
∑
G

q
p+N−l1(G)−l2(G)−l3(G)

2 (ek1 − 1)l1(G)

×(ek2 − 1)l2(G)(ek3 − 1)l3(G)

= q
N
2

∑
G

q
p
2(
ek1 − 1

q
1
2

)l1(G)(
ek2 − 1

q
1
2

)l2(G)

×(
ek3 − 1

q
1
2

)l3(G)

Let

xj =
ekj − 1

q
1
2

, for j = 1, 2, 3.

The triangular random cluster model is known ( Baxter, Temperley and
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Ashley, Proc. Roy. Soc. London A, 1978 ), to be critical at

√
qx1x2x3 + x1x2 + x2x3 + x1x3 = 1.

Define λ snd αj, j = 1, 2, 3 by

coshλ =
√
q/2.

xj =
sinh(λ− αj)

sinhαj
.

Note that the parameters λ, αj, j = 1, 2, 3 are real if q > 4 and pure

imaginary in the interval (0, πi) if q < 4.

For convenience, if q < 4, define φ and vj by

φ = −iλ, vj = −iαj, j = 1, 2, 3.
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Then

ekj = 1 +
1
2
[
√
q(4− q) cot vj − q], for q < 4.

and the critical point can be written as

α1 + α2 + α3 = 2λ for q > 0

v1 + v2 + v3 = 2φ for q < 4.
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The per-site free energy at critical point,( Baxter, Temperley and

Ashley, Proc. Roy. Soc. London A, 1978 ),

fRC
critical =

1
2

log q + ψ(λ, α1) + ψ(λ, α2) + ψ(λ, α3)

where

ψ(λ, α) = λ− α+
∞∑

n=1

e−nλ sinh 2n(λ− α)
n coshnλ

for q > 4,

and

ψ(λ, α) =
1
2

∫ ∞

−∞

sinh(π − φ)x sinh(φ− v)x
x sinhπx coshφx

dx

for q < 4.
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We first rewrite ψ as following

ψ(φ, v) = lim
r→∞

1
2

∮
r

sinh(π − φ)z sinh(φ− v)z
z sinhπz coshφz

dz.

The contour integral can be carried out by using residue formula. Since

sinh(πz1) = 0 if z1 = ni, n = 1, 2, ...,

cosh(φz2) = 0 if z2 =
π

2φ
(2m+ 1),m = 0, 1, 2, ....



13

Case 1 if π
2φ is either irrational or π

2φ = M/N,N = 2, 4, 6, ....( No

double poles )

We have

ψ(φ, v) =
∞∑

n=1

1
n

tan(nφ) sin 2n(φ− v)

+
∞∑

m=0

2
2m+ 1

cot
[(
m+

1
2

)π2

φ

]
sin
[
(2m+ 1)

vπ

φ

]
.

Since

tanx sin 2(x− y) = cos 2y − cos 2(x− y) + tanx sin 2y,
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we have

ψ(φ, v) = log[
sin(φ− v)

sin v
] +

∞∑
n=1

1
n

tan(nφ) sin(2nv)

+
∞∑

n=0

2
2n+ 1

cot[(n+
1
2
)
π2

φ
] sin[(2n+ 1)

vπ

φ
].

after making use of the summation identity

∞∑
n=1

cosnx
n

= − ln
[
2 sin

(x
2

)]
, 0 < x < 2π.
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Case 2 if π/2φ = M/N,N = 1, 3, 5, ....

ψ((Nπ)/2M,v) = R1 +R2 +R3,

where

R1 is the sum of residues from simple pole in z1,

R2 is the sum of residues from double poles,

R3 is the sum of residues from simple pole in z2.

To compute R1, we note that the forming of double poles excludes

points Mi, 3Mi, 5Mi, · · · which divide the remaining z1 = ni into

sections n = {1,M − 1}, {M + 1, 3M − 1}, {3M + 1, 5M − 1}, · · · .
Then we can write

R1 = R11 +R12
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where R11 is the sum of the first M − 1 residues and R12 is the sum of

the rest. Then

R11 =
M−1∑
k=1

tan(kφ)
[
sin[2k(φ− v)]

k

]
, φ =

Nπ

2M

R12 =
M−1∑

k=−(M−1)

∞∑
n=1

tan[(2nM + k)φ]
[
sin[2(2nM + k)(φ− v)]

2nM + k

]
.

Expanding the sine function, we can rewrite R11 as

R11 =
M−1∑
k=1

tan(kφ)
[
sin(2kφ)

∫ π/2k

2v

sin kxdx− cos(2kφ)
∫ 2v

0

cos kxdx
]
.
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To evaluate R12 we use 4Mφ = 2Nπ, obtain

R12 =
M−1∑

k=−(M−1)

tan(kφ)
∞∑

n=1

[
sin(2kφ)

∫ π/2|k|

2v

sin[(2nM + k)x]dx

− cos(2kφ)
∫ 2v

0

cos[(2nM + k)x]dx
]
, φ =

Nπ

2M
.

Thus we have

R12 = 2
M−1∑
k=1

tan(kφ)
∞∑

n=1

[
sin(2kφ)

∫ π/2k

2v

sin(2nMx) cos(kx)dx

+cos(2kφ)
∫ 2v

0

sin(2nMx) sin(kx)dx
]
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Write

∞∑
n=1

sin(2nMx) = lim
N→∞

N∑
n=1

sin(2nMx)

= lim
N→∞

cos(Mx)− cos[(2N + 1)Mx]
2 sinMx

,

thus, one obtains

R12 =
M−1∑
k=1

tan(kφ)
[

sin(2kφ)
∫ π/2k

2v

cos(kx) cot(Mx)dx

+cos(2kφ)
∫ 2v

0

sin(kx) cot(Mx)dx
]
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Finally, we obtain

R1 =
M−1∑
k=1

tan(kφ)
[

sin(2kφ)
∫ π/2k

2v

cos(M − k)x
sin(Mx)

dx

− cos(2kφ)
∫ 2v

0

sin(M − k)x
sin(Mx)

dx

]
,

Now we compute R2. Residues from double poles at z2 = (2m+ 1)Mi

are

R2 = πi

∞∑
m=0

lim
z→z2

d

dz

[
(z − z2)2

(
sinh(π − φ)z sinh 2(φ− v)z

z sinhπz coshφz

)]
.

where z2 = (2m+ 1)Mi, φ = Nπ/2M,N = odd. Define number u and
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integer p by

Mv = pπ/2 + u, where 0 < u < π/2, p = 0, 1, 2, · · · , p < N,

then

R2 =
2(−1)p

MNπ

∞∑
m=0

sin[2(2m+ 1)u]
(2m+ 1)2

+
4(−1)p(φ− v)

Nπ

∞∑
m=0

cos[2(2m+ 1)u]
2m+ 1

.

where Mv = pπ/2 + u By the following Identity
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Identity 1

∞∑
k=0

sin 2(2k + 1)x
(2k + 1)2

= Ti2(tanx) + x ln cotx,

∞∑
k=0

cos 2(2k + 1)x
2k + 1

=
1
2

ln cotx , 0 < x <
π

2

with 0 < x < π
2 , where

Ti2(a) =
∫ a

0

tan−1 t

t
dt

= a− a3

3
+
a5

5
− a7

7
+ · · ·,
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we get

R2 =
2(−1)p

MNπ
Ti2(tanu) +

(−1)p(N − p)
MN

ln cotu.

To compute R3, the sum of residues of simple poles in z2, we need to

exclude from z2 = [(2m+ 1)M/N ]i the double poles

Mi, 3Mi, 5Mi, · · · . As a result, the remaining simple poles in z2 are

divided into sections m =
{0, (N−3)/2}, {(N+1)/2, (3N−3)/2}, {(3N+1)/2, (5N−3)/2}, · · · .
The situation is similar to that of R1, and R3 can be similarly

computed.

R3 =
(N−1)/2∑

k=1

−2M
N

cot(
2kMπ

N
)
∫ 2v

0

sin(2xMk
N )

sin(Mx)
dx,
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where N = 1, 3, · · · . Note that R3 = 0 when N = 1.
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For q = 2, clearly, φ = π/4,M = 2, N = 1 since cosφ =
√
q/2 and

π/2φ = M/N ( Case 2 ). First, we obtain

ψ

(
π

4
, v

)
=

1
2

ln[(cot v)(cot 2v)] +
1
π
Ti2(tan 2v).

Therefore, the critical free energy is

fPotts
critical =

1
2

ln 2 +
3∑

α=1

[
1
2

ln[(cot vα)(cot 2vα)] +
1
π
Ti2(tan 2vα)

]
.

with critical condition v1 + v2 + v3 = 2φ.

On the other hand, the q = 2 Potts model is completely equivalent to

an Ising model.
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Consider an Ising model on the same triangular lattice of N site with

anisotropic interactions Kα/2, α = 1, 2, 3. We have the equivalence

ZIsing
N =

∑
σ=±1

∏
<i,j>

e(Kα/2)σiσj

= e−N(K1+K2+K3)/2ZPotts
N

∣∣∣
q=2

after making use of the identity σiσj = 2δ(σi, σj)− 1. It follows that
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their critical free energies are related by

f Ising = fPotts
∣∣∣
q=2

− 1
2
(K1 +K2 +K3)

= fPotts
∣∣∣
q=2

− 1
2

ln
[
(cot v1)(cot v2)(cot v3)]

=
1
2

ln 2 +
3∑

α=1

[
1
2

ln(cot 2vα) +
1
π
Ti2(tan 2vα)

]
.

Since ekj = 1 + 1/2[
√
q(4− q) cot vj − q], for q = 2,

eKα = cot vα , or sinhKα = cot 2vα.
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It can be verified that the critical point (v1 + v2 + v3 = π/2) satisfies

coshK1 coshK2 coshK3 + sinhK1 sinhK2 sinhK3

= sinhK1 + sinhK2 + sinhK3,

In fact, the Ising free energy is known at all temperatures [Houtappel,

Physica 16, 425− 455(150)] to be

f Ising = ln 2 +
1

8π2

∫ 2π

0

∫ 2π

0

ln
[
coshK1 coshK2 coshK3

+sinhK1 sinhK2 sinhK3 − sinhK1 cos θ

− sinhK2 cosφ− sinhK3 cos(θ + φ)
]
dθdφ.
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so we can rewrite the integral as

f Ising
critical = ln 2 +

1
2
I(a, b, c)

with a = cot 2v1, b = cot 2v2, c = cot 2v3 and

I(a, b, c) =
1

4π2

∫ 2π

0

dθ

∫ 2π

0

dφ ln
[
a+ b+ c

−a cos θ − b cosφ− c cos(θ + φ)
]

with

ab+ bc+ ca = 1.

( The critical condition v1 + v2 + v3 = π/2 )
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So

I(a, b, c) = − ln 2 + ln(abc) +
2
π

[
Ti2(a−1) + Ti2(b−1) + Ti2(c−1)

]
,

with

ab+ bc+ ca = 1.

( a = cot 2v1, b = cot 2v2, c = cot 2v3 )
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For the general integral I(A,B,C) we can always define variables

a = AS, b = BS, c = CS with S = 1/
√
AB +BC + CA, thus, one has

I(A,B,C) = − lnS + I(a, b, c)

= − ln(2S) + ln(abc) +
2
π

[
Ti2(a−1) + Ti2(b−1) + Ti2(c−1)

]
= − ln(2S) +

2
π

[
Ti2(AS) + Ti2(BS) + Ti2(CS)

]
,

where use has been made of the identity

Ti2(y−1) = Ti2(y)−
π

2
ln y, y > 0.
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Special cases
For q = 1, clearly, φ = π/3,M = 3, N = 2 since cosφ =

√
q/2 and

π/2φ = M/N ( Case 1 ). Then cot
[
(n+ 1/2)π2/φ

]
= 0. So we use

the following identity
Identity 2

∞∑
n=1

1
n

tan(nπ/3) sin 2nv = ln
√

3 cot v + 1√
3 cot v − 1

, 0 < v < π/6.

We obtain

ψ
(π

3
, vj

)
= ln

√
3 cot vj + 1

2
= Kj

since eKj = 1 + 1/2[
√
q(4− q)cotvj − q]. It follows that the free energy

is

fRC
critical = K1 +K2 +K3 , q = 1.
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For q = 3 we have φ = π/6,M = 3, N = 1 (Case 2). It is

straightforward to obtain

fRC
critical(3) =

1
4

ln
(

9
8

)
+

3
2

ln
(

2 +
√

3
2

)
+

3∑
α=1

[
1
6

ln
(√

3 cot vα − 1√
3 tan vα + 1

)
+

1
2

ln
(
1 +

√
3 cot 2vα

)
+

2
3π

Ti2(cot 3vα)
]
.

for v1 + v2 + v3 = π/3.


