Solutions of Homework #5

3. Consider $\alpha \in \mathbb{R}$. If $\alpha < 0 \Rightarrow \{x | f_n(x) \le \alpha\} = \emptyset \Rightarrow \{x | f_n(x) \le \alpha\}$ is measurable.

If $\alpha \ge 0$, let $k = \min\{y | y \in \mathbb{N} \cup \{0\}, \alpha \ge y\}$. Then

$$\{x|f_n(x) \le \alpha\} = \bigcup_{t=0}^{\kappa} \bigcup_{x_i \in I, i=1,\dots,n-1} (0.x_1 x_2 \cdots x_{n-1} t, 0.x_1 x_2 \cdots x_{n-1} (t+1)],$$

where $I = \{0, 1, \dots, m-1\}$. Since $(0.x_1x_2\cdots x_{n-1}t, 0.x_1x_2\cdots x_{n-1}(t+1)]$ is an interval and therefore measurable, $\{x|f_n(x) \leq \alpha\}$ is also measurable. Therefore $f_n(x)$ is measurable, $\forall n$.

4. (a) $f(x) = sup_n f_n(x)$

Claim : $\forall \alpha \in \mathbb{R}, f^{-1}((\alpha, \infty]) = \{x | f(x) > \alpha\} = \bigcup_n f_n^{-1}((\alpha, \infty]).$ pf : $\forall x \in f^{-1}((\alpha, \infty]) \Rightarrow f(x) > \alpha.$ Since $f = sup_n f_n$, therefore

$$\forall 0 < \varepsilon < f(x) - \alpha, \exists n_0 \in \mathbb{N} \text{ s.t.} f_{n_0}(x) + \varepsilon > f(x).$$

Therefore,

$$f_{n_0}(x) > f(x) - \varepsilon > f(x) - (f(x) - \alpha) = \alpha.$$

 $\begin{array}{l} \therefore x \in f_{n_0}^{-1}((\alpha,\infty]) \Rightarrow x \in \bigcup_n f_n^{-1}((\alpha,\infty]). \\ \text{Thus, } f^{-1}((\alpha,\infty]) \subset \bigcup_n f_n^{-1}((\alpha,\infty]). \\ \text{On the other hand, } \forall x \in \bigcup_n f_n^{-1}((\alpha,\infty]) \Rightarrow x \in f_{n_0}^{-1}((\alpha,\infty]), \\ \text{for some } n_0, \\ \Rightarrow f(x) \geq f_{n_0}(x) > \alpha \Rightarrow x \in f^{-1}((\alpha,\infty]) \text{ Hence we've proved this claim.} \end{array}$

Since we know $f'_n s$ are measurable, $f_n^{-1}((\alpha, \infty])$ is measurable. And therefore $f^{-1}((\alpha, \infty]) = \bigcup_n f_n^{-1}((\alpha, \infty])$ is measurable. $\Rightarrow f$ is measurable.

- (b) (1) We have known that $inf_n f_n(x) = -sup_n(-f_n(x))$. if $f_n(x)$'s are measurable, by (a), $inf_n f_n(x)$ is also measurable.
 - (2) Set $g(x) := \limsup_{n \to \infty} f_n(x) = \inf_{n \in \mathbb{N}} \sup_{k \ge n} f_k(x) =: \inf_{n \in \mathbb{N}} g_n(x)$. Here we define $g_n(x) = \sup_{k \ge n} f_k(x)$. Then by (a), we know g'_n sare measurable, and by(1), g(x) is also measurable.
- 5. This assertion is NOT true!!

Let $V \subset [0, 1]$ be a non-measurable set. Define

$$f(x) = \begin{cases} 1, & x \in V \\ -1, & x \in [0,1] \setminus V \end{cases}$$

Then |f|(x) = 1 on [0, 1].

Thus |f| is measurable on ([0,1])

But, $f^{-1}((0,\infty]) = V$ is not measurable, therefore f is not measurable!

- 6. Let V be the Vitali-type nonmeasurable set with $\lambda^*(V) = 1$.
 - (1) Suppose to the contrary that \exists measurable set $A \subset V$ and $\lambda(A) > 0$.

Then let $A_1 = \{x - y | x, y \in A\}$ and $V_1 = \{x - y | x, y \in V\}$. $\Rightarrow \exists \varepsilon \in \mathbb{R}$ such that $(-\varepsilon, \varepsilon) \subset A_1 \Rightarrow (-\varepsilon, \varepsilon) \subset V_1$. Since $(-\varepsilon, \varepsilon)$ is an interval $\Rightarrow \exists k \in \mathbb{Q}$ such that $k \in (-\varepsilon, \varepsilon)$. Then $k \in V_1$. Then we get a contradiction.

(2) Suppose to the contrary that \exists a measurable set $B \subset V^c$ and $\lambda(B) > 0.$ $\Rightarrow [0,1] \supset B^c \supset V \Rightarrow \lambda^*([0,1]) \ge \lambda^*(B^c) \ge \lambda^*(V).$ $\Rightarrow \lambda^*(B^c) = 1 \Rightarrow \lambda^*(B) = \lambda(B) = 0.$ We get a contradiction!