
Solutions of Homework #4

1. Claim1 : λ(E + s) = λ(E).

λ∗(E + s) = inf{Σλ∗(In)|
⋃

In ⊇ E + s, In : open}

= inf{Σλ∗(In − s)|
⋃

(In − s) ⊇ E, In : open}

= inf{Σλ∗(In)|
⋃

(In − s) ⊇ E, In : open}

= inf{Σλ∗(In)|
⋃

In ⊇ E, In : open} = λ∗(E)

Therefore, λ(E + s) = λ(E).

Claim2 : E ∈ L ⇒ E + s ∈ L.
Let A ⊆ R and B = A− s.

λ∗(A ∩ (E + s)) + λ∗(A \ (E + s))

= λ∗((B + s) ∩ (E + s)) + λ∗((B + s) \ (E + s))

= λ∗((B ∩ E) + s) + λ∗((B \ E) + s)

= λ∗(B ∩ E) + λ∗(B \ E) = λ∗(B) = λ∗(A).

Therefore, E + s ∈ L.

Claim3 : λ(rE) = |r|λ(E), r ∈ R.

λ∗(rE) = inf{Σλ∗(In)|
⋃

In ⊇ rE, In : open}

= inf{Σλ∗(rIn)|
⋃

In ⊇ rE, In : open}

= |r|inf{Σλ∗(In)|
⋃

In ⊇ E, In : open} = |r|λ(E).

Therefore, λ(rE) = |r|λ(E).

Claim4 : E ∈ L ⇒ rE ∈ L.
If r = 0, then rE = {0} ∈ L.
For r 6= 0, let A ⊆ R and B = 1

r
A.

λ∗(A ∩ (rE)) + λ∗(A \ (rE))

= λ∗((rB) ∩ (rE)) + λ∗((rB) \ (rE))

= λ∗(r(B ∩ E)) + λ(r(B \ E))

= |r|λ∗(B ∩ E) + |r|λ(B \ E)

= |r|λ∗(B) = λ∗(A)

Therefore rE ∈ L.

2. Let E be Lebesgue measurable with λ(E) < ∞. Then λ(E) = λ∗(E).
By the definition of λ∗, ∀ε > 0, ∃ open intervals {An} such that⋃∞

n=1 An ⊃ E and

λ(
∞⋃

n=1

An) ≤
∞∑

n=1

λ(An) < λ∗(E) +
ε

2
= λ(E) +

ε

2
(1)



Since λ(E) < ∞,
∑∞

n=1 λ(An) converges.
Therefore with respect to this ε, ∃n0 ∈ N s.t.

∞∑
n=n0+1

λ(An) <
ε

2
. (2)

Let G =
⋃n0

n=1 An, then because A′
ns are open intervals , we can write

G =
⋃K0

k=1 Ik, where Ik is a finite sequence of mutually disjoit open
intervals. Thus, we have

G M E ⊂ (G \ E) ∪ (
∞⋃

n=n0+1

An) ⊂ ((
∞⋃

n=1

An) \ E) ∪ (
∞⋃

n=n0+1

An)

Since E is Lebesgue measurable and by (1) (2), we have

λ(G M E) <
ε

2
+

ε

2
= ε

3. Let B1 = [0.5, 0.6) and

Bn = {0.a1a2 · · · an−15|ai ∈ I, ∀i = 1, . . . , n−1}, where I = 0, 1, 2, . . . , 9.

Let A1 = ([0, 1] \B1), A2 = (A1 \B2), . . ., An = (An−1 \Bn).
Therefore,

A1 ⊇ A2 ⊇ · · · ⊇ An ⊇ · · · .

⇒ A =
⋂∞

n=1 An.
Since λ(An) = ( 9

10
)n, ⇒ λ(A1) = 9

10
< ∞. Thus we have

λ(A) = λ(
∞⋂

n=1

An) = lim
n→∞

λ(An) = lim
n→∞

(
9

10
)n = 0

4. There are two examples! Given 0 < ε < 1.

1o The first stage of the construction is to subdivide [0, 1] into three
parts. The length of the middle part is ε

3
, and the remaining two

parts have equal length. We denote the middle part by A1.
At the second stage, we subdivide each of the remaining two parts
at the first stage into three parts. The length of each middle part is
ε
9
. Then let A2 = A1∪(the two middle parts at the second stage).

Use similar algorithm to construct {Ak} for all k ∈ N and observe
that Ak ↗ and each Ak is measurable.
Set E =

⋃∞
n=1 An.

λE = lim
n→∞

λAn =
ε

3
+ 2 ∗ ε

9
+ 4 ∗ ε

33
+ · · ·

=
ε

3
(1 +

2

3
+ (

2

3
)2 + · · · )

=
ε

3
∗ 1

1− 2
3

= ε

Therefore λ(E) = ε.



Claim : E is dense in [0, 1].

Pf :∀x ∈ [0, 1]
case< 1 >: x ∈ E ⇒ ∀r > 0B(x, r) ∩ E 6= ∅.
case< 2 >: x ∈ ([0, 1] \ E) ⇒ x ∈ (

⋂∞
n=1(An)c) ∩ [0, 1].

⇒ x ∈ Ac
n ∩ [0, 1], ∀n. We can estimate dist(x, An). For

example,

dist(x, An) ≤ 1− λ(An)

2n
<

1

2n
.

Thus x is a limit point of
⋃

An = E.

2o Let E ′ = (0, ε), and E = E ′ ∪ (Q ∩ [0, 1]).
Since Q is dense in [0, 1], E is also dense in [0, 1]. Moreover,

ε = λ(0, ε) ≤ λ(E) ≤ λ(E ′) + λ(Q) = ε + 0 = ε

Therefore λ(E) = ε.


