Solutions of Homework #4

1. <u>Claim</u>1 : $\lambda(E+s) = \lambda(E)$.

$$\lambda^{*}(E+s) = \inf\{\Sigma\lambda^{*}(I_{n})| \bigcup I_{n} \supseteq E+s, I_{n} : open\}$$
$$= \inf\{\Sigma\lambda^{*}(I_{n}-s)| \bigcup(I_{n}-s) \supseteq E, I_{n} : open\}$$
$$= \inf\{\Sigma\lambda^{*}(I_{n})| \bigcup(I_{n}-s) \supseteq E, I_{n} : open\}$$
$$= \inf\{\Sigma\lambda^{*}(I_{n})| \bigcup I_{n} \supseteq E, I_{n} : open\} = \lambda^{*}(E)$$

Therefore, $\lambda(E+s) = \lambda(E)$.

 $\underline{\text{Claim}}2 : E \in \mathcal{L} \Rightarrow E + s \in \mathcal{L}.$ Let $A \subseteq \mathbb{R}$ and B = A - s.

$$\begin{split} \lambda^*(A \cap (E+s)) &+ \lambda^*(A \setminus (E+s)) \\ &= \lambda^*((B+s) \cap (E+s)) + \lambda^*((B+s) \setminus (E+s)) \\ &= \lambda^*((B \cap E) + s) + \lambda^*((B \setminus E) + s) \\ &= \lambda^*(B \cap E) + \lambda^*(B \setminus E) = \lambda^*(B) = \lambda^*(A). \end{split}$$

Therefore, $E + s \in \mathcal{L}$.

 $\underline{\mathbf{Claim}}3 \,:\, \lambda(rE) = |r|\lambda(E),\, r \in \mathbb{R}.$

$$\lambda^*(rE) = \inf\{\Sigma\lambda^*(I_n) | \bigcup I_n \supseteq rE, I_n : open\}$$
$$= \inf\{\Sigma\lambda^*(rI_n) | \bigcup I_n \supseteq rE, I_n : open\}$$
$$= |r|\inf\{\Sigma\lambda^*(I_n) | \bigcup I_n \supseteq E, I_n : open\} = |r|\lambda(E).$$

Therefore, $\lambda(rE) = |r|\lambda(E)$.

 $\underline{\text{Claim}}4 : E \in \mathcal{L} \Rightarrow rE \in \mathcal{L}.$ If r = 0, then $rE = \{0\} \in \mathcal{L}$.
For $r \neq 0$, let $A \subseteq \mathbb{R}$ and $B = \frac{1}{r}A$.

$$\lambda^*(A \cap (rE)) + \lambda^*(A \setminus (rE))$$

= $\lambda^*((rB) \cap (rE)) + \lambda^*((rB) \setminus (rE))$
= $\lambda^*(r(B \cap E)) + \lambda(r(B \setminus E))$
= $|r|\lambda^*(B \cap E) + |r|\lambda(B \setminus E)$
= $|r|\lambda^*(B) = \lambda^*(A)$

Therefore $rE \in \mathcal{L}$.

2. Let *E* be Lebesgue measurable with $\lambda(E) < \infty$. Then $\lambda(E) = \lambda^*(E)$. By the definition of λ^* , $\forall \varepsilon > 0$, \exists open intervals $\{A_n\}$ such that $\bigcup_{n=1}^{\infty} A_n \supset E$ and

$$\lambda(\bigcup_{n=1}^{\infty} A_n) \le \sum_{n=1}^{\infty} \lambda(A_n) < \lambda^*(E) + \frac{\varepsilon}{2} = \lambda(E) + \frac{\varepsilon}{2}$$
(1)

Since $\lambda(E) < \infty$, $\sum_{n=1}^{\infty} \lambda(A_n)$ converges. Therefore with respect to this ε , $\exists n_0 \in \mathbb{N}$ s.t.

$$\sum_{n=n_0+1}^{\infty} \lambda(A_n) < \frac{\varepsilon}{2}.$$
 (2)

Let $G = \bigcup_{n=1}^{N_0} A_n$, then because $A'_n s$ are open intervals, we can write $G = \bigcup_{k=1}^{K_0} I_k$, where I_k is a finite sequence of mutually disjoit open intervals. Thus, we have

$$G \vartriangle E \subset (G \setminus E) \cup (\bigcup_{n=n_0+1}^{\infty} A_n) \subset ((\bigcup_{n=1}^{\infty} A_n) \setminus E) \cup (\bigcup_{n=n_0+1}^{\infty} A_n)$$

Since E is Lebesgue measurable and by (1) (2), we have

$$\lambda(G \bigtriangleup E) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

3. Let $B_1 = [0.5, 0.6)$ and

$$B_n = \{0.a_1 a_2 \cdots a_{n-1} 5 | a_i \in I, \forall i = 1, \dots, n-1\}, \text{ where } I = 0, 1, 2, \dots, 9$$

Let $A_1 = ([0, 1] \setminus B_1), A_2 = (A_1 \setminus B_2), A_3 = (A_1 \setminus B_3)$

Let $A_1 = ([0, 1] \setminus B_1), A_2 = (A_1 \setminus B_2), \dots, A_n = (A_{n-1} \setminus B_n).$ Therefore,

$$A_1 \supseteq A_2 \supseteq \cdots \supseteq A_n \supseteq \cdots$$

 $\Rightarrow A = \bigcap_{n=1}^{\infty} A_n.$ Since $\lambda(A_n) = (\frac{9}{10})^n$, $\Rightarrow \lambda(A_1) = \frac{9}{10} < \infty$. Thus we have $\lambda(A) = \lambda(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \lambda(A_n) = \lim_{n \to \infty} (\frac{9}{10})^n = 0$

- 4. There are two examples! Given $0 < \varepsilon < 1$.
 - 1° The first stage of the construction is to subdivide [0, 1] into three parts. The length of the middle part is $\frac{\varepsilon}{3}$, and the remaining two parts have equal length. We denote the middle part by A_1 . At the second stage, we subdivide each of the remaining two parts at the first stage into three parts. The length of each middle part is $\frac{\varepsilon}{9}$. Then let $A_2 = A_1 \cup (\text{the two middle parts at the second stage})$. Use similar algorithm to construct $\{A_k\}$ for all $k \in \mathbb{N}$ and observe that $A_k \nearrow$ and each A_k is measurable. Set $E = \bigcup_{n=1}^{\infty} A_n$.

$$\lambda E = \lim_{n \to \infty} \lambda A_n = \frac{\varepsilon}{3} + 2 * \frac{\varepsilon}{9} + 4 * \frac{\varepsilon}{3^3} + \cdots$$
$$= \frac{\varepsilon}{3} (1 + \frac{2}{3} + (\frac{2}{3})^2 + \cdots)$$
$$= \frac{\varepsilon}{3} * \frac{1}{1 - \frac{2}{3}} = \varepsilon$$

Therefore $\lambda(E) = \varepsilon$.

Claim : E is dense in [0, 1].

 $\mathbf{Pf} : \forall x \in [0, 1]$

case < 1 >: $x \in E \Rightarrow \forall r > 0B(x,r) \cap E \neq \emptyset$. case < 2 >: $x \in ([0,1] \setminus E) \Rightarrow x \in (\bigcap_{n=1}^{\infty} (A_n)^c) \cap [0,1]$. $\Rightarrow x \in A_n^c \cap [0,1], \forall n$. We can estimate dist (x, A_n) . For example,

$$dist(x, A_n) \le \frac{1 - \lambda(A_n)}{2^n} < \frac{1}{2^n}.$$

Thus x is a limit point of $\bigcup A_n = E$.

2° Let $E' = (0, \varepsilon)$, and $E = E' \cup (\mathbb{Q} \cap [0, 1])$. Since \mathbb{Q} is dense in [0, 1], E is also dense in [0, 1]. Moreover,

$$\varepsilon = \lambda(0, \varepsilon) \le \lambda(E) \le \lambda(E') + \lambda(\mathbb{Q}) = \varepsilon + 0 = \varepsilon$$

Therefore $\lambda(E) = \varepsilon$.