Solutions of Homework #3

1. Claim : S_E is a σ -algebra on E.

Suppose that $B \in \mathcal{S}_E \Rightarrow \exists A \in \mathcal{S} \text{ such that } B = A \cap E$.

$$\therefore B^c = A^c \cap E.$$

Since S is a σ -algebra $\Rightarrow A^c \in S \Rightarrow B^c \in S_E$.

Suppose $B_i \in \mathcal{S}_E \Rightarrow \exists A_i \in \mathcal{S} \text{ such that } B_i = A_i \cap E$.

$$\therefore \bigcap_{i=1}^{\infty} B_i = \bigcap_{i=1}^{\infty} (A_i \cap E) = (\bigcap_{i=1}^{\infty} A_i) \cap E.$$

 $\therefore \bigcap_{i=1}^{\infty} B_i = \bigcap_{i=1}^{\infty} (A_i \cap E) = (\bigcap_{i=1}^{\infty} A_i) \cap E.$ Since \mathcal{S} is a σ -algebra $\Rightarrow \bigcap_{i=1}^{\infty} A_i \in \mathcal{S} \Rightarrow \bigcap_{i=1}^{\infty} B_i \in \mathcal{S}_E.$

Therefore S_E is a σ -algebra on E.

Claim: ν is a measure on E.

(1): ν is well-defined.

By the assumption, $\mu^*(X) = \mu^*(E)$, we have

$$\mu^*(X) = \mu^*(A \cap X) + \mu^*(A^c \cap X) = \mu^*(A \cap E) + \mu^*(A^c \cap E) = \mu^*(E)$$

Since $A = A \cap X \supseteq A \cap E \Rightarrow \mu^*(A) = \mu^*(A \cap X) \ge \mu^*(A \cap E)$, and $A^c = A^c \cap Xsupseteq A^c \cap E \Rightarrow \mu^*(A^c) = \mu^*(A^c \cap X) \geq$ $\mu^*(A^c \cap E)$. $\mu^*(X)$ is finite and $\mu^*(X) = \mu^*(E)$, we have

$$\mu^*(A) = \mu^*(A \cap E)$$
 and $\mu^*(A^c) = \mu^*(A^c \cap E)$.

Similarly, $\mu^*(B) = \mu^*(B \cap E)$. Therefore

$$\mu(A) = \mu^*(A) = \mu^*(A \cap E) = \mu^*(B \cap E) = \mu^*(B) = \mu(B).$$

- (2) $:\nu(\emptyset) = 0$ $\nu(\emptyset) = \nu(\emptyset \cap E) = \nu(\emptyset) = 0.$
- $(3) : A \cap E \supseteq B \cap E \Rightarrow \nu(A \cap E) \ge \nu(B \cap E).$ Since ν is well-defined, \therefore $(A \cap E) \supseteq (B \cap E) \Rightarrow \mu(A) \ge \mu(B)$. Terefore $\nu(A \cap E) = \mu(A) > \mu(B) = \nu(B \cap E)$.
- (4) :Countable additivity.

Let $B_i = A_i \cap E \in \mathcal{S}_E$, $A_i \in \mathcal{S}$ and $B_i \cap B_j = \emptyset$, $\forall i \neq j$. Let $C_1 = A_1$, $C_i = A_i \setminus (\bigcup_{j=1}^{i-1}), \forall i \geq 2$. $\therefore C_i \in \mathcal{S}, \bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} C_i, C_i \text{ disjoint, and}$

$$C_i \cap E = B_i = A_i \cap E$$
.

Therefore

$$\nu(\bigcup_{i=1}^{\infty} B_i) = nu(\bigcup_{i=1}^{\infty} (A_i \cap E)) = \mu(\bigcup_{i=1}^{\infty} A_i)$$

$$= \mu(\bigcup_{i=1}^{\infty} C_i) = \sum_{i=1}^{\infty} \mu(C_i)$$

$$= \sum_{i=1}^{\infty} \mu(A_i) = \sum_{i=1}^{\infty} \nu(A_i \cap E) = \sum_{i=1}^{\infty} \nu(B_i)$$

Suppose
$$B \in \mathcal{A}$$
, $B = ((a_1, b_1] \cup ... \cup (a_n, b_n]) \cap X$, where

$$-\infty \le a_1 \le b_1 \le a_2 \le b_2 \le \ldots \le a_n \le b_n \le \infty.$$

$$\therefore B^c \text{ on } X = ((-\infty, a_1] \cup (\bigcup_{i=1}^{n-1} (b_i, a_{i+1}]) \cup (a_n, \infty]) \cap X$$

$$\therefore B^c \in \mathcal{A}.$$

Suppose
$$C \in \mathcal{A}$$
, $C = ((c_1, d_1] \cup \ldots \cup (c_m, d_m]) \cap X$, where

$$-\infty < c_1 < d_1 < c_2 < d_2 < \dots < c_m < d_m < \infty.$$

If $(a,b] \cap (c,d) \neq \emptyset$, then $(a,b] \cup (c,d) = (e,f]$, for some e,f. Therefore,

$$B \cup C = (\bigcup_{i=1}^{n} (a_i, b_i] \cap X) \cup (\bigcup_{j=1}^{m} (c_j, d_j] \cap X)$$
$$= (\bigcup_{i=1}^{n} (a_i, b_i] \cup \bigcup_{j=1}^{m} (c_j, d_j]) \cap X = (\bigcup_{k=1}^{l} (e_k, f_k]) \cap X, \text{ for some } e_k, f_k$$

 $\therefore B \cup C \in \mathcal{A}$ and \mathcal{A} is an algebra.

(ii) :

Since 2^X is a σ -algebra and $\mathcal{A} \subset 2^X \Rightarrow \sigma(\mathcal{A}) \subset 2^X$.

Consider $x \in \mathbb{Q}$, since $\{x\} = \bigcap_{n=1}^{\infty} ((x - \frac{1}{n}, x] \cap X) \Rightarrow \{x\} \in \sigma(\mathcal{A}).$

Suppose $S \in 2^X \Rightarrow S = \{x_1, x_2, \ldots\}$ by the fact that X is countable.

$$\therefore S = \bigcup_{i=1}^{\infty} \{x_i\}, \ x_i \in \mathbb{Q}, \ \forall i.$$

 $\therefore S = \bigcup_{i=1}^{\infty} \{x_i\}, \ x_i \in \mathbb{Q}, \ \forall i.$ Since $\{x_i\} \in \sigma(\mathcal{A}) \Rightarrow S \in \sigma(\mathcal{A}) \Rightarrow 2^X \subset \sigma(\mathcal{A}).$

Hence $2^X = \sigma(\mathcal{A})$.

(iii):

Let

$$\mu_1(S) = \begin{cases} 0, & \text{if } S = \emptyset \\ \infty, & \text{otherwise} \end{cases}$$

and $\mu_2(S)$ = the cardinality of S.

Suppose $A \in \mathcal{A}$.

If
$$A = \emptyset$$
, $\mu_1(\emptyset) = \mu_2(\emptyset) = \mu(\emptyset) = 0$.

If
$$A \neq \emptyset \Rightarrow A = \{x_1, x_2, \ldots\} \Rightarrow \mu_1(A) = \mu_2(A) = \mu(A) = \infty$$
.

Therefore μ_1 and μ_2 are the extension of μ to $\sigma(\mathcal{A})$.

But
$$\mu_1(\{x\}) = \infty \neq 1 = \mu(\{x\}).$$

Hence the extension of μ to $\sigma(A)$ is not unique.

3. <u>Note</u>: S is a σ -algebra, and (X, S, μ) is a measure space, but may not be complete.

(i) By definition,
$$\mathcal{N}(\mu) = \{E \subset X | \mu^*(E) = 0\}.$$

10 Let $\mathcal{A} = \{E \subset X | E \subset N \text{ for some } N \in \mathcal{S} \text{ with } \mu(N) = 0\}.$ $\forall E \in \mathcal{A}, \exists N \in \mathcal{S} \text{ with } E \subset N \text{ such that } \mu(N) = 0.$ $\Rightarrow 0 \leq \mu^*(E) \leq \mu^*(N) = \mu(N) = 0.$ $\therefore \mu^*(E) = 0 \Rightarrow E \in \mathcal{N}(\mu).$ On the other hand, given $E \in \mathcal{N}(\mu)$. \exists measurable cover

On the other hand, given $E \in \mathcal{N}(\mu)$, \exists measurable cover $B \in \mathcal{S}$ of E such that $E \subset B$ and $\mu(B) = \mu^*(E) = 0$.

 $E \in \mathcal{A}$. Hence $\mathcal{A} = \mathcal{N}(\mu)$.

2º By definition, $S \vee \mathcal{N}(\mu) = \text{the } \sigma\text{-algebra generated by } S \cup \mathcal{N}(\mu).$

Let $\mathcal{B} = \{ E \cup F | | E \in \mathcal{S} \text{ and } F \in \mathcal{N}(\mu) \}.$

Obviously, $\mathcal{B} \subset \S \vee \mathcal{N}(\mu)$.

Claim: \mathcal{B} is a σ -algebra containing $S \cup \mathcal{N}(\mu)$.

pf:Since $\emptyset \in \mathcal{S} \cap \mathcal{N}(\mu), \forall E \in \mathcal{S}, F \in \mathcal{N}(\mu)$

 $\Rightarrow E = E \cup \emptyset \in \mathcal{B} \text{ and } F = \emptyset \cup F \in \mathcal{B}.$

 $\mathcal{L} : \mathcal{S} \cup \mathcal{N}(\mu) \subset \mathcal{B}$. Now, we're going to prove that \mathcal{B} is a σ -algebra.

First, it's easy to see $\emptyset \in \mathcal{B}$.

Second, given $\{B_n\}_{n=1}^{\infty} \subset \mathcal{B}$

 $\Rightarrow B_n = E_n \cup F_n$, for some $E_n \in \mathcal{S}$ and $F_n \in \mathcal{N}(\mu)$. Thus,

$$\bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} (E_n \cup F_n) = (\bigcup_{n=1}^{\infty} E_n) \cup (\bigcup_{n=1}^{\infty} F_n).$$
 (1)

Since S is a σ -algebra, $\bigcup_{n=1}^{\infty} E_n \in S$.

Now we can choose a measurable cover N_n of F_n , form the $\underbrace{problem4}_{n=1}$, we know that $\bigcup_{n=1}^{\infty} N_n$ is also a measurable cover $\underbrace{\bigcup_{n=1}^{\infty} F_n}$. Therefore

$$\mu^*(\bigcup_{n=1}^{\infty} F_n) \le \mu(\bigcup_{n=1}^{\infty} N_n) \le \sum_{n=1}^{\infty} \mu(N_n) = 0$$

 $\Rightarrow \mu^*(\bigcup_{n=1}^{\infty} F_n) = 0 \Rightarrow \bigcup_{n=1}^{\infty} F_n \in \mathcal{N}(\mu) \text{ (by 10)}.$ Hence by (1), $\bigcup_{n=1}^{\infty} B_n \in \mathcal{B}$.

Third, given $B \in \mathcal{B} \Rightarrow B = E \cup F$, for some $E \in \mathcal{S}$ and $F \in \mathcal{N}(\mu)$.

 $\Rightarrow \exists N \in \mathcal{S} \text{ such that } F \subset N \text{ and } \mu(N) = 0.$

 $\Rightarrow B^c = (E \cup F)^c = E^c \cap F^c = (E^c \cap N^c) \cup (N \setminus F).$

Since $(N \setminus F) \subset N$ and $\mu(N) = 0$, $(N \setminus F) \in \mathcal{N}(\mu)$.

Therefore $B^c \in \mathcal{B}$, since $E, N \in \mathcal{S}$, and we complete the proof of the claim.

(ii) : $\bar{\mu}$ is the completion of μ .

 $\Rightarrow Dom(\bar{\mu}) = \mathcal{S} \vee \mathcal{N}(\mu).$

 $(\Rightarrow) : \forall E \subset Dom(\bar{\mu}).$ $\Rightarrow E \in \mathcal{S} \vee \mathcal{N}(\mu) = \mathcal{S}_{\mu^*} = \{E \subset X | E \triangle B \in \mathcal{N}(\mu), \text{ for some } B \in \mathcal{S}\}.$

 $\Rightarrow \exists B \in \mathcal{S} \text{ s.t. } E \triangle B \in \mathcal{N}(\mu).$

 \Rightarrow Let $C = E \cup B$, $A = E \cap B$.

Then $A \subset E \subset C$ and $A, C \in Dom(\bar{\mu})$, and therefore we have

$$0 \le \bar{\mu}(C \setminus A) = \bar{\mu}(C \setminus E) + \bar{\mu}(E \setminus A)$$
$$\le 2\bar{\mu}(B \triangle E) = 2\mu(B \triangle E) = 0.$$

Therefore $\mu(C \setminus A) = \bar{\mu}(C \setminus A) = 0$

- (\Leftarrow): For any E with the following property, $\exists A, C \in Dom(\bar{\mu})$ with $A \subset E \subset C$ s.t. $\mu(C \setminus A) = 0$. Since $(E \setminus A)$ $(C \setminus A)$ and $\mu(C \setminus A) = 0$, we have $E \setminus A \in \mathcal{N}(\mu)$. Consider $E = A \cup (E \setminus A)$. Since $A \in \mathcal{S}$ and $(E \setminus A) \in \mathcal{N}(\mu)$, we have $E \in \mathcal{S} \vee \mathcal{N}(\mu) = Dom(\bar{\mu})$.
- 4. (i) : Let C_j be a measurable cover of A_j . Then C_j is a μ^* -measurable set and

$$\mu^*(C_j) = \mu^*(A_j)$$
 with $C_j \supset A_j$.

Now, let B be a measurable cover of $\bigcup_i A_i$, then

$$\mu^*(\bigcup_j A_j) = \mu^*(B)$$
 and $\bigcup_j A_j \subset B$.

Set $\tilde{C}_j = B \cap C_j$. Thus $A_j \subset \tilde{C}_j$. Moreover, we have

$$\mu^*(A_j) \le \mu^*(\tilde{C}_j) \le \mu^*(C_j).$$

 \hat{C}_j is a measurable cover of A_j . Consider $\mu^*(C_j \triangle \tilde{C}_j) = \mu^*(C_j \setminus \tilde{C}_j)$.

- (a) : If $\mu^*(\tilde{C}_j) = \infty$ for some jThen $\mu^*(A_j) = \mu^*(C_j) = \mu^*(\tilde{C}_j) = \infty$ $\Rightarrow \mu^*(\bigcup_j C_j) = \mu^*(\bigcup_j A_j) = \infty$ and $(\bigcup_j C_j) \supset (\bigcup_j A_j)$ Therefore $\bigcup_i C_j$ is a measurable cover of $\bigcup_j A_j$.
- (b) : If $\mu^*(\tilde{C}_j) < \infty$, $\forall j$. Then $\mu^*(C_j \triangle \tilde{C}_j) = \mu^*(C_j) - \mu^*(\tilde{C}_j) = \mu^*(A_j) - \mu^*(A_j) = 0$. By $\underline{homework\#2}$,

$$\mu^*(\bigcup_j C_j) = \mu^*(\tilde{C}_j) \le \mu^*(B) = \mu^*(\bigcup_j A_j)$$

Since $(\bigcup_j A_j) \subset (\bigcup_j C_j)$, we have $\mu(\bigcup_j C_j) = \mu^*(\bigcup_j A_j)$. Therefore $\bigcup_i C_j$ is also a measurable cover of $\bigcup_i A_j$

- (ii) There are many examples! For example:
 - (1) $X = \mathbb{R}$, $S = \{A \subset X | A \text{ is countable}\} \cup \{A \subset X | A^c \text{ is countable}\}$. Write $A_1 = \{A \subset X | A \text{ is countable}\}$ and $A_2 = \{A \subset X | A^c \text{ is countable}\}$. Define

$$m(A) = \begin{cases} 0, & \text{if } A \in \mathcal{A}_1\\ 1, & \text{if } A \in \mathcal{A}_2 \end{cases}$$

Let
$$A_1 = (-\infty, 0), A_2 = (0, \infty) \Rightarrow \mu^*(A_1) = \mu^*(A_2) = 1$$
.
Let $C_1 = C_2 = \mathbb{R}$, then $\mu^*(A_i) = \mu(C_i) = 1, i = 1, 2$.
Thus, $\mu^*(A_1 \cap A_2) = 0 \neq 1 = \mu(\mathbb{R}) = \mu(C_1 \cap C_2)$.

(2) $X = \mathbb{R}$ and m is the counting measure. Set $A_1 = (0,1)$ and $A_2 = (1,2)$ and $C_1 = [0,1]$, $C_2 = [1,2]$. Then $\mu^*(A_i) = \mu^*(C_i) = \infty$, i = 1, 2 and $\mu^*(A_1 \cap A_2) = 0 \neq 1 = \mu^*(C_1 \cap C_2)$.