Solutions of Homework #2

- 1. $\mathcal{A} = \{A \subset X | A \text{ or } A^c \text{ is finite} \}.$
 - (a)

(A is an algebra)

(i) $:: \emptyset = X^c$ is finite, $:: \emptyset, X \in \mathcal{A}$.

(ii) Let $A \in \mathcal{A}$.

If A is finite $\Rightarrow (A^c)^c = A$ is finite $\Rightarrow A^c \in \mathcal{A}$.

If A^c is finite $\Rightarrow A^c \in \mathcal{A}$.

(iii) Let $\{A_n\}_{n=1}^k \subset \mathcal{A}$. If $A'_n s$ are finite. $\Rightarrow \bigcup_{n=1}^k A_n$ is finite. $\therefore \bigcup_{n=1}^k A_n \in \mathcal{A}$.

If there is $A_{n_0} \in \mathcal{A}$ such that $A_{n_0}^c$ is finite.

 $\Rightarrow (\bigcup_{n=1}^k A_n)^c = \bigcap_{n=1}^k A_n^c \subset A_{n_0}^c, \therefore (\bigcup_{n=1}^k A_n)^c \text{ is finite.}$ $\therefore \bigcup_{n=1}^k A_n \in \mathcal{A}.$

(A is not a σ -algebra)

Let $X = \{x_n\}_{n=1}^{\infty}$ and $A_k = \{x_{2k}\}$ for k = 1, 2, ...Then $\bigcup_{k=1}^{\infty} A_k$ is infinite and $(\bigcup_{k=1}^{\infty} A_k)^c = \{x_{2k-1}\}_{k=1}^{\infty}$ is also infinite. Therefore $\bigcup_{k=1}^{\infty} A_k$ doesn't belong to \mathcal{A} and \mathcal{A} is not a σ -algebra.

- (b) Let $\{A_n\}_{n=1}^k \subset \mathcal{A}$ be such that $A_n \cap A_m = \emptyset, \forall m \neq n$. Then
 - (i) If $A'_n s$ are finite, then $\bigcup_{n=1}^k A_n$ is finite. $\Rightarrow m(\bigcup_{n=1}^k A_n) = 0 = \sum_{n=1}^k m(A_n)$.
 - (ii) If there is A_{n_0} such that $(A_{n_0})^c$ is finite, then $m(A_{n_0}) = 1$. $\Rightarrow (\bigcup_{n=1}^k A_n)^c = \bigcap_{n=1}^k (A_n)^c \subset A_{n_0}$ is finite. $\therefore m(\bigcup_{n=1}^k A_n) = 1.$

On the other hand, $A_n \cap A_m = \emptyset$, $\forall m \neq n$

 $\therefore \bigcup_{n\neq n_0} A_n \subset (A_{n_0})^c.$

 $\therefore \bigcup_{n\neq n_0}^{n\neq n_0} A_n \text{ is finite.} \Rightarrow m(\bigcup_{n\neq n_0} A_n) = 0 = \sum_{n\neq n_0} m(A_n).$

Hence $m(\bigcup_{n=1}^k A_n) = 1 = m(A_{n_0}) + 0 = m(A_{n_0}) + \bigcup_{n \neq n_0} m(A_n) = 0$ $\sum_{n=1}^{k} m(A_n).$

(c) If X is <u>uncountable</u>, then m can be extended to a countably additive measure on a σ -algebra.

Claim: m is countably additive on \mathcal{A} .

pf: Let $\{A_n\}_{n=1}^{\infty} \subset \mathcal{A}$ be such that

$$A_n \cap A_m = \emptyset, \forall n \neq m \text{ and } \bigcup_{n=1}^{\infty} A_n \in \mathcal{A}.$$

(i) If A_n is finite, $\forall n$ and $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$, then we will claim $\bigcup_{n=1}^{\infty} A_n$ is finite.

if not, $(\bigcup_{n=1}^{\infty} A_n)^c$ is finite.

Because X is uncountable, we know that $\bigcup_{n=1}^{\infty} A_n$ is also un-

Then we get a contradiction by the fact that the $A'_n s$ are finite.

(ii) If there is A_{n_0} such that $(A_{n_0})^c$ is finite, then $(\bigcup_{n=1}^{\infty} A_n)^c \subset (A_{n_0})^c$ is finite. $\therefore m(\bigcup_{n=1}^{\infty} A_n) = 1$. On the other hand, $\therefore A_n \cap A_{n_0} = \emptyset, \forall n \neq n_0$.

$$\therefore \bigcup_{n \neq n_0} A_n \subset A_{n_0}^c \Rightarrow \bigcup_{n \neq n_0} A_n \text{ is finite.}$$

$$\therefore m(\bigcup_{n \neq n_0} A_n) = 0 = \bigcup_{n \neq n_0} m(A_n).$$
So $m(\bigcup_{n=1}^{\infty} A_n) = 1 = m(A_{n_0}) = \sum_{n=1}^{\infty} m(A_n).$

Since m is countably additive on the algebra \mathcal{A} , m can be extended to a countably additive measure on a σ -algebra.

If fact, if we set

$$S = \{A \subset X | A \text{ or } A^c \text{ is countable } \}$$
 and

$$\tilde{m}(A) = \begin{cases} 1, & \text{if } A^c \text{ is countable} \\ 0, & \text{if } A \text{ is countable} \end{cases}$$

Then we can check that S is a σ -algebra and \tilde{m} is a measure on S such that $\tilde{m} = m$ on A.

2.

$$\mu^*(\bigcup_j A_j) \leq \mu^*(\bigcup_j A_j \cup \bigcup_j B_j)$$

$$= \mu^*(\bigcup_j (A_j \cup B_j)) = \mu^*(\bigcup_j ((A_j \triangle B_j) \cup (A_j \cap B_j)))$$

$$= \mu^*((\bigcup_j (A_j \triangle B_j)) \cup (\bigcup_j (A_j \cap B_j)))$$

$$\leq \mu^*((\bigcup_j (A_j \triangle B_j)) + \mu^*(\bigcup_j (A_j \cap B_j)))$$

$$\leq \sum_j \mu^*(A_j \triangle B_j) + \mu^*((\bigcup_j A_j) \cap (\bigcup_j B_j)) = \mu^*((\bigcup_j A_j) \cap (\bigcup_j B_j))$$

$$\leq \mu^*(\bigcup_j A_j)$$

Therefore $\mu^*(\bigcup_j A_j) = \mu^*((\bigcup_j A_j) \cap (\bigcup_j B_j))$. Similarly, $\mu^*(\bigcup_j B_j) = \mu^*((\bigcup_j A_j) \cap (\bigcup_j B_j))$. Hence, $\mu^*(\bigcup_j A_j) = \mu^*(\bigcup_j B_j)$.

3. Let F be a closed subset of X. We want to show that $\forall A \in 2^X$

$$\mu^*(A) = \mu^*(A \cap F) + \mu^*(A \setminus F).$$

Consider $A_n = \{x \in A \setminus F | d(x, F) \ge \frac{1}{n} \}$. Since $\rho(A_n, A \cap F) = \inf\{d(x, y) | x \in A_n, y \in A \cap F\} > 0$, by assumption we have

$$\mu^*(A_n \cup (A \cap F)) = \mu^*(A_n) + \mu^*(A \cap F)$$

Since $A_n \cup (A \cap F) \subset A$, therefore

$$\mu^*(A_n) + \mu^*(A \cap F) \le \mu^*(A) \tag{1}$$

Claim(1): $\bigcup_{n=1}^{\infty} A_n = A \setminus F$.

Obviously, $\bigcup_{n=1}^{\infty} A_n \subset A \setminus F$.

If not, $\exists x \in (A \setminus F) \setminus \bigcup_{n=1}^{\infty} A_n$. $\Rightarrow d(x, F) < \frac{1}{n}, \forall n$.

Therefore d(x, F) = 0. Since F is closed, we have $x \in F$, and therefore we get a contradiction.

If we can show $\mu^*(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu^*(A_n)$, then let $n \to \infty$ in (1), we have

$$\mu^*(A \setminus F) + \mu^*(A \cap F) \le \mu^*(A)$$

Since the opposite inequality is always true, F is μ^* -measurable.

Claim(2): $\mu^*(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu^*(A_n)$

There are two proof of this claim:

pf(a): We will show the general case, that is,

If
$$B_n \bigcup_{n=1}^{\infty}$$
, then $\mu^*(\bigcup_{n=1}^{\infty} B_n) = \lim_{n \to \infty} \mu^*(B_n)$

 $\underline{step1}$: If $\{B_n\}$ are μ^* -measurable, then the equality holds. (We have showed this in the class.)

 $\underline{step2}$: For each n, we can choose a measurable cover \tilde{C}_n of $\overline{B_n}$.

Let $C_n = \bigcap_{k=n}^{\infty} \tilde{C}_n$, then $C_n \nearrow$ and measurable. Moreover $\tilde{C}_k \supset B_k \supset B_n, \forall k \geq n$. Therefore $B_n \subset C_n$.

From the following inequality,

$$\mu^*(B_n) \le \mu^*(C_n) \le \mu^*(\tilde{C}_n) = \mu^*(B_n)$$

we have $\mu^*(C_n) = \mu^*(B_n)$. ie. C_n is also a measurable cover of B_n .

By problem 4 of $\underline{Homework\#3}$, $\bigcup_{n=1}^{\infty} C_n$ is a measurable cover of $\bigcup_{n=1}^{\infty} B_n$.

Then by $\underline{step1}$, $\mu^*(\bigcup_{n=1}^{\infty} C_n) = \lim_{n \to \infty} \mu^*(C_n)$. Hence $\mu^*(\overline{\bigcup_{n=1}^{\infty}} B_n) = \lim_{n \to \infty} \mu^*(B_n)$.

By Taking $A_n = B_n$, we proves this claim.

pf(b): (多數同學的證明)

If $\mu^*(A) = \infty$, then $\mu^*(A \cap F) + \mu^*(A \setminus F) \ge \mu^*(A) = \infty$. Therefore $\mu^*(A) = \mu^*(A \cap F) + \mu^*(A \setminus F)$.

If $\mu^*(A) < \infty$. Let $B_1 = A_1$, $B_n = A_n \setminus A_{n-1}$. Then

$$\rho(B_{2k}, B_{(2(k+1))}), \rho(B_{2k-1}, B_{2k+1}) > 0, \forall k \in \mathbb{N}$$

By assumption,

$$\mu^*(\bigcup_{k=1}^{\infty} B_{2k}) = \sum_{k=1}^{\infty} \mu^*(B_{2k})\mu^*(\bigcup_{k=1}^{\infty} B_{2k-1}) = \sum_{k=1}^{\infty} \mu^*(B_{2k-1})$$

Since $\bigcup_{k=1}^{\infty} B_{2k}$, $\bigcup_{k=1}^{\infty} B_{2k-1} \subset A$, we have

$$\sum_{k=1}^{\infty} \mu^*(B_{2k}), \sum_{k=1}^{\infty} \mu^*(B_{2k-1}) < \infty.$$

Therefore $\forall \varepsilon > 0, \exists$ large integer k_0 such that

$$\sum_{k=k_0}^{\infty} \mu^*(B_{2k}), \sum_{k=k_0}^{\infty} \mu^*(B_{2k-1}) < \frac{\varepsilon}{2}.$$

Hence $\forall 2n > k_0$,

$$\mu^*(\bigcup_{n=1}^{\infty} A_n) \le \mu^*(A_{2n}) + \sum_{k=n+1}^{\infty} \mu^*(B_{2k}) + \sum_{k=n+1}^{\infty} \mu^*(B_{2k-1})$$
$$< \mu^*(A_{2n}) + \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \mu^*(A_{2n}) + \varepsilon.$$

Therefore $\sup_n \mu^*(A_n) \geq \mu^*(\bigcup_{n=1}^{\infty} A_n)$. $\therefore \mu^*(A_n) \nearrow \text{ and } \mu^*(A_n) \leq \mu^*(A) < \infty$, $\therefore \lim_{n \to \infty} \mu^*(A_n) = \sup_n \mu^*(A_n)$. $\mu^*(\bigcup_{n=1}^{\infty} A_n) \leq \lim_{n \to \infty} \mu^*(A_n)$. On the other hand, $\therefore A_n \subset \bigcup_{n=1}^{\infty} A_n$, the opposite inequality is also true.

4. Let $E \subset X$.

If
$$\nu^*(E) = \infty \Rightarrow \nu^*(E) \geq \mu^*(E)$$
.
If $\nu^*(E) < \infty$, given $\varepsilon > 0$, $\exists A_i \in \mathcal{A}$ such that

$$E \subset \bigcup_i A_i \text{ and } \sum_i \nu(A_i) \leq \nu^*(E) + \varepsilon.$$

Since $\mu = \nu$ on \mathcal{A} , we have $\sum_{i} \nu(A_i) = \sum_{i} \mu(A_i) \ge \mu^*(E)$. $\Rightarrow \mu^*(E) \le \nu^*(E) + \varepsilon$, $\forall \varepsilon$. $\Rightarrow \mu^*(E) \le \nu^*(E)$, $\forall E$.

 $\therefore \nu$ is σ -finite, countably additive, $\sigma(\mathcal{A})$ is the σ -algebra generated by \mathcal{A} and μ is the extension of ν . $\therefore \mu$ is the measure defined on $\sigma(\mathcal{A})$ and $\mu = \nu^*$ on $\sigma(\mathcal{A})$.

Let $E \subset X$.

If
$$\mu^*(E) = \infty \Rightarrow \mu^*(E) \ge \nu^*(E)$$
.

If $\mu^*(E) < \infty$, given $\varepsilon > 0$, $\exists B_i \in \sigma(\mathcal{A})$ such that

$$E \subset \bigcup_i B_i$$
 and $\sum_i \mu(B_i) \leq \mu^*(E) + \varepsilon$.

Since $\mu = \nu^*$ on $\sigma(A)$, we have $\sum_i \mu(B_i) = \sum_i \nu^*(B_i) \le \nu^*(E)$.

$$\Rightarrow \nu^*(E) \le \mu^*(E) + \varepsilon, \ \forall \varepsilon.$$

 $\Rightarrow \nu^*(E) \leq \mu^*(E), \forall E.$

Hence $\mu^* = \nu^*$.